

Lena Funcke

CRC 1639 NuMeriQS

Lattice 2024, Liverpool, 30 July 2024

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 30 July 2024

3+1D: Topological -Term 2+1D: Topological Chern-Simons Term

3+1D: Topological -Term 2+1D: Topological Chern-Simons Term

Relevance Strong CP problem, Grand Unified Theories, …

Relevance

Fractional quantum Hall effect, fermion/boson dualities, …

¹ Pisarski (1986)

Relevance Strong CP problem, Grand Unified Theories, …

Parameter Continuous angle $\theta \in [0,2\pi)$

Degeneracy Ground state has no θ -dependent degeneracy

3+1D: Topological -Term 2+1D: Topological Chern-Simons Term

Relevance Fractional quantum Hall effect, fermion/boson dualities, …

Parameter ¹ Quantized Chern-Simons coupling $k \in \mathbb{Z}$, called "level"

Degeneracy ² Ground state has k -fold degeneracy on a torus

¹Pisarski (1986) ² Eliezer, Semenoff (1992)

Relevance Strong CP problem, Grand Unified Theories, …

Parameter Continuous angle $\theta \in [0,2\pi)$

Degeneracy Ground state has no θ -dependent degeneracy

Mass generation No mass from θ -term, only from QCD and Higgs

3+1D: Topological -Term 2+1D: Topological Chern-Simons Term

Relevance Fractional quantum Hall effect, fermion/boson dualities, …

Parameter ¹ Quantized Chern-Simons coupling $k \in \mathbb{Z}$, called "level"

Degeneracy ² Ground state has k -fold degeneracy on a torus

Mass generation ³ Photon mass from Chern-Simons term: $m_{\gamma} = ke^2/2\pi$

¹Pisarski (1986)

² Eliezer, Semenoff (1992)

³ Deser, Jackiw, Templeton (1982)

Relevance Strong CP problem, Grand Unified Theories, …

Parameter Continuous angle $\theta \in [0,2\pi)$

Degeneracy Ground state has no θ -dependent degeneracy

Mass generation No mass from θ -term, only from QCD and Higgs

3+1D: Topological -Term 2+1D: Topological Chern-Simons Term

Relevance Fractional quantum Hall effect, fermion/boson dualities, …

Parameter ¹ Quantized Chern-Simons coupling $k \in \mathbb{Z}$, called "level"

Degeneracy ² Ground state has k -fold degeneracy on a torus

Mass generation ³ Photon mass from Chern-Simons term: $m_{\gamma} = ke^2/2\pi$ \rightarrow "Maxwell-Chern-Simons (MCS) theory"

¹Pisarski (1986)

² Eliezer, Semenoff (1992)

³ Deser, Jackiw, Templeton (1982)

Problem State-of-the-Art

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 30 July 2024

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term

$$
S_{CS}(A) = -\frac{ik}{4\pi} \int d^3x \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho
$$

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term

$$
S_{CS}(A) = -\frac{ik}{4\pi} \int d^3x \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}
$$

Naïve lattice discretization:

$$
S_{CS}(A) = -\frac{ik}{4\pi}a^2d\tau\sum_{x\in\text{sites}}\epsilon^{\mu\nu\rho}A_{x;\mu}\Delta_{\nu}A_{x+\hat{\mu};\rho}
$$

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term

$$
S_{CS}(A) = -\frac{ik}{4\pi} \int d^3x \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}
$$

Naïve lattice discretization:

$$
S_{CS}(A) = -\frac{ik}{4\pi}a^2d\tau \sum_{x \in \text{sites}} \epsilon^{\mu\nu\rho} A_{x;\mu} \Delta_{\nu} A_{x+\hat{\mu};\rho}
$$

Problem: *compact* **gauge fields** → **monopoles** → **Chern-Simons term violates gauge invariance!** ¹

¹Pisarski (1986), Affleck et al. (1989)

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 1995 Maxwell 2024

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term

$$
S_{CS}(A) = -\frac{ik}{4\pi} \int d^3x \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho
$$

Naïve lattice discretization:

$$
S_{CS}(A) = -\frac{ik}{4\pi}a^2d\tau\sum_{x\in\text{sites}}\epsilon^{\mu\nu\rho}A_{x;\mu}\Delta_{\nu}A_{x+\hat{\mu};\rho}
$$

Problem: *compact* gauge fields
$$
\rightarrow
$$
 monopoles \rightarrow Chern-Simons term violates gauge invariance! ¹

¹Pisarski (1986), Affleck et al. (1989) ²Lüscher (1989), …

Lattice formulation of *non-compact* **MCS Hamiltonian** ² However, non-compact gauge field \rightarrow no simulations

Continuum: 2+1D Chern-Simons term

$$
S_{CS}(A) = -\frac{ik}{4\pi} \int d^3x \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho
$$

Naïve lattice discretization:

Lattice formulation of *non-compact* **MCS Hamiltonian** ² However, non-compact gauge field \rightarrow no simulations

Lattice formulation of *compact* **CS Hamiltonian** ³ Villain approach, monopoles eliminated → gauge invariant

$$
S_{CS}(A) = -\frac{ik}{4\pi}a^2d\tau\sum_{x\in\text{sites}}\epsilon^{\mu\nu\rho}A_{x;\mu}\Delta_{\nu}A_{x+\hat{\mu};\rho}
$$

Problem: *compact* gauge fields
$$
\rightarrow
$$
 monopoles \rightarrow Chern-Simons term violates gauge invariance! ¹

¹Pisarski (1986), Affleck et al. (1989) ²Lüscher (1989), …

³ Jacobson, Sulejmanpasic (2024)

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 30 July 2024

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term

$$
S_{CS}(A) = -\frac{ik}{4\pi} \int d^3x \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho
$$

Naïve lattice discretization:

$$
S_{CS}(A) = -\frac{ik}{4\pi}a^2d\tau\sum_{x\in\text{sites}}\epsilon^{\mu\nu\rho}A_{x;\mu}\Delta_{\nu}A_{x+\hat{\mu};\rho}
$$

Problem: *compact* **gauge fields** → **monopoles** → **Chern-Simons term violates gauge invariance!** ¹

¹Pisarski (1986), Affleck et al. (1989) ²Lüscher (1989), …

Lattice formulation of *non-compact* **MCS Hamiltonian** ² However, non-compact gauge field \rightarrow no simulations

Lattice formulation of *compact* **CS Hamiltonian** ³ Villain approach, monopoles eliminated \rightarrow gauge invariant However, non-commuting geometry \rightarrow no simulations

³ Jacobson, Sulejmanpasic (2024)

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 2024

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term

$$
S_{CS}(A) = -\frac{ik}{4\pi} \int d^3x \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho
$$

Naïve lattice discretization:

$$
S_{CS}(A) = -\frac{ik}{4\pi}a^2d\tau \sum_{x \in \text{sites}} \epsilon^{\mu\nu\rho} A_{x;\mu} \Delta_{\nu} A_{x+\hat{\mu};\rho}
$$

Problem: *compact* **gauge fields** → **monopoles** → **Chern-Simons term violates gauge invariance!** ¹

¹Pisarski (1986), Affleck et al. (1989) ²Lüscher (1989), …

Lattice formulation of *non-compact* **MCS Hamiltonian** ² However, non-compact gauge field \rightarrow no simulations

Lattice formulation of *compact* **CS Hamiltonian** ³ Villain approach, monopoles eliminated \rightarrow gauge invariant However, non-commuting geometry \rightarrow no simulations

Our goal: Derive *compact* **MCS lattice Hamiltonian** Paves the way for simulations on (quantum) computers

³ Jacobson, Sulejmanpasic (2024)

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 30 July 2024

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 30 July 2024

2+1D QED Lattice Hamiltonian + Extension Compact Gauge Fields

2+1D QED Lattice Hamiltonian + Extension Compact Gauge Fields

2+1D QED Lattice Hamiltonian + Extension Compact Gauge Fields

Magnetic field term: similar to QED (without monopoles)

2+1D QED Lattice Hamiltonian + Extension Compact Gauge Fields

Magnetic field term: similar to QED (without monopoles) **Electric field term:** modified by Chern-Simons term

2+1D QED Lattice Hamiltonian + Extension Compact Gauge Fields

Magnetic field term: similar to QED (without monopoles) **Gauge configurations:** can take values in (−∞, +∞) **Electric field term:** modified by Chern-Simons term

2+1D QED Lattice Hamiltonian + Extension Compact Gauge Fields

Magnetic field term: similar to QED (without monopoles) **Electric field term:** modified by Chern-Simons term

Gauge configurations: can take values in (−∞, +∞) **Compactness:** ensured by constraints on Hilbert space

$$
\hat{H} = \frac{e^2}{2a^2} \sum_{\text{plaquettes}} \left[\left(\frac{\hat{p}_1}{\hat{p}_1} - \left(\frac{ka^2}{4\pi} \right) \hat{A}_2 \right)^2 + \left(\underbrace{\hat{p}_2} + \left(\frac{ka^2}{4\pi} \right) \hat{A}_1 \right)^2 \right]
$$
\n
$$
+ \frac{1}{2e^2} \sum_{\text{plaquettes}} \left(-\hat{A}_2 \underbrace{\left(-\hat{A}_1 \right)}_{\hat{A}_1} \hat{A}_2 \right)
$$
\nCommutation relations:
$$
[\hat{A}_x, \hat{p}_y] = i \delta_{x,y}
$$

2+1D QED Lattice Hamiltonian + Extension Compact Gauge Fields

Magnetic field term: similar to QED (without monopoles) **Electric field term:** modified by Chern-Simons term

Gauge configurations: can take values in (−∞, +∞) **Compactness:** ensured by constraints on Hilbert space

$$
\hat{H} = \frac{e^2}{2a^2} \sum_{\text{plaquettes}} \left[\left(\frac{\hat{p}_1}{\hat{p}_1} - \left(\frac{ka^2}{4\pi} \right) \hat{A}_2 \right)^2 + \left(\frac{\hat{p}_2}{4\pi} \right) + \left(\frac{ka^2}{4\pi} \right) \hat{A}_1 \right)^2 \right]
$$
\n
$$
+ \frac{1}{2e^2} \sum_{\text{plaquettes}} \left(-\hat{A}_2 \left(\frac{-\hat{A}_1}{\hat{A}_1} \right)^2 \hat{A}_2 \right)
$$
\nCommutation relations: $[\hat{A}_x, \hat{p}_y] = i \delta_{x,y}$

Quadratic Hamiltonian: can be solved analytically!

Pure Maxwell Theory Maxwell-Chern-Simons Theory Maxwell-Chern-Simons Theory

Pure Maxwell Theory Maxwell-Chern-Simons Theory Maxwell-Chern-Simons Theory

No gap: Linear dispersion relation of gapless photon

Pure Maxwell Theory Maxwell-Chern-Simons Theory Maxwell-Chern-Simons Theory

No gap: Linear dispersion relation of gapless photon

Plot of dispersion relation:

$$
\Delta E = \omega = \sqrt{\frac{1}{a^2} \left[2(1 - \cos q_1) + 2(1 - \cos q_2) \right] + \left(\frac{ke^2}{4\pi} \right)^2 \left[2 + 2\cos(q_1 + q_2) \right]}
$$

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 1995 Maxwell-Chern-Simons Theory 30 July 2024

Plot of dispersion relation:

$$
\Delta E = \omega = \sqrt{\frac{1}{a^2} \left[2(1 - \cos q_1) + 2(1 - \cos q_2) \right] + \left(\frac{ke^2}{4\pi} \right)^2 \left[2 + 2\cos(q_1 + q_2) \right]}
$$

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 1995 Maxwell-Chern-Simons Theory 30 July 2024

Photon Mass & Quantized Coupling The Couplist Couplist Cound-State Degeneracy

Photon Mass & Quantized Coupling The Couplist Couplist Cound-State Degeneracy

Continuum limit of dispersion relation

Correctly reproduces photon mass in continuum: ¹

 $\omega^2 \rightarrow |\tilde{q}|^2 + \left(\frac{ke^2}{2\pi}\right)^2$

¹ Deser, Jackiw, Templeton (1982)

Photon Mass & Quantized Coupling The Coupling Cound-State Degeneracy

Continuum limit of dispersion relation

Correctly reproduces photon mass in continuum: ¹

 $\omega^2 \rightarrow |\tilde{q}|^2 + \left(\frac{ke^2}{2\pi}\right)^2$

Quantization of Chern-Simons level

Constraint from large gauge transformations:

$$
e^{2\pi i \hat{L}_1} e^{2\pi i \hat{L}_2} = \boxed{e^{2\pi i k}} e^{2\pi i \hat{L}_2} e^{2\pi i \hat{L}_1}
$$

Correctly reproduces quantization property: ²

$$
\left[e^{2\pi i k}\right]=1\qquad \Longrightarrow \;k\in \mathbb{Z}
$$

¹ Deser, Jackiw, Templeton (1982) ² Pisarski (1986)

Photon Mass & Quantized Coupling The Coupling Cound-State Degeneracy

Continuum limit of dispersion relation

Correctly reproduces photon mass in continuum: ¹

 $\omega^2 \rightarrow |\tilde{q}|^2 + \left(\frac{ke^2}{2\pi}\right)^2$

Quantization of Chern-Simons level Constraint from large gauge transformations:

$$
e^{2\pi i \hat{L}_1} e^{2\pi i \hat{L}_2} = \boxed{e^{2\pi i k}} e^{2\pi i \hat{L}_2} e^{2\pi i \hat{L}_1}
$$

Correctly reproduces quantization property: ²

$$
e^{2\pi i k} = 1 \qquad \Longrightarrow \ k \in \mathbb{Z}
$$

Degeneracy for torus

Torus: periodic boundary conditions \rightarrow non-trivial topology

¹ Deser, Jackiw, Templeton (1982) ² Pisarski (1986)

Image credit: https://commons.wikimedia.org/w/index.php?curid=32176358

Photon Mass & Quantized Coupling The Coupling Cound-State Degeneracy

Continuum limit of dispersion relation

Correctly reproduces photon mass in continuum: ¹

 $\omega^2 \rightarrow |\tilde{q}|^2 + \left(\frac{ke^2}{2\pi}\right)^2$

Quantization of Chern-Simons level Constraint from large gauge transformations:

$$
e^{2\pi i \hat{L}_1} e^{2\pi i \hat{L}_2} = \boxed{e^{2\pi i k}} e^{2\pi i \hat{L}_2} e^{2\pi i \hat{L}_1}
$$

Correctly reproduces quantization property: ²

$$
e^{2\pi i k} = 1 \qquad \Longrightarrow \ k \in \mathbb{Z}
$$

Degeneracy for torus

Torus: periodic boundary conditions \rightarrow non-trivial topology

Correctly reproduce k -fold degeneracy of ground state 3

¹ Deser, Jackiw, Templeton (1982)

²Pisarski (1986)

³ Eliezer, Semenoff (1992)

Image credit: https://commons.wikimedia.org/w/index.php?curid=32176358

Photon Mass & Quantized Coupling The Coupling Cound-State Degeneracy

Continuum limit of dispersion relation

Correctly reproduces photon mass in continuum: ¹

 $\omega^2 \rightarrow |\tilde{q}|^2 + \left(\frac{ke^2}{2\pi}\right)^2$

Quantization of Chern-Simons level Constraint from large gauge transformations:

$$
e^{2\pi i \hat{L}_1} e^{2\pi i \hat{L}_2} = \boxed{e^{2\pi i k}} e^{2\pi i \hat{L}_2} e^{2\pi i \hat{L}_1}
$$

Correctly reproduces quantization property: ²

$$
\left[e^{2\pi i k}\right] = 1 \qquad \Longrightarrow \ k \in \mathbb{Z}
$$

Degeneracy for torus

Torus: periodic boundary conditions \rightarrow non-trivial topology

Correctly reproduce k -fold degeneracy of ground state 3 \rightarrow good cross-check / benchmark for numerical methods!

¹ Deser, Jackiw, Templeton (1982)

² Pisarski (1986)

³ Eliezer, Semenoff (1992)

Image credit: https://commons.wikimedia.org/w/index.php?curid=32176358

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 30 July 2024

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 1999 100 30 July 2024

Summary Contract Contra

Topological Chern-Simons term

Relevant for fractional quantum Hall effect, topological mass generation, fermion/boson dualities, …

Summary Contract Contra

Topological Chern-Simons term

Relevant for fractional quantum Hall effect, topological mass generation, fermion/boson dualities, …

Our derivation

Compact Maxwell-Chern-Simons lattice Hamiltonian

Summary Contract Contra

Topological Chern-Simons term

Relevant for fractional quantum Hall effect, topological mass generation, fermion/boson dualities, …

Our derivation

Compact Maxwell-Chern-Simons lattice Hamiltonian

Topological features

Correct continuum limit of photon mass, quantization of Chern-Simons level, degeneracy of ground state, …

Summary Contract Contra

Topological Chern-Simons term

Relevant for fractional quantum Hall effect, topological mass generation, fermion/boson dualities, …

Our derivation

Compact Maxwell-Chern-Simons lattice Hamiltonian

Topological features

Correct continuum limit of photon mass, quantization of Chern-Simons level, degeneracy of ground state, …

Simulation on quantum and classical computers

Rich phase structure upon adding fermions \rightarrow no exact solution \rightarrow Hamiltonian-based simulations

Summary Contract Contra

Topological Chern-Simons term

Relevant for fractional quantum Hall effect, topological mass generation, fermion/boson dualities, …

Our derivation

Compact Maxwell-Chern-Simons lattice Hamiltonian

Topological features

Correct continuum limit of photon mass, quantization of Chern-Simons level, degeneracy of ground state, …

Simulation on quantum and classical computers

Rich phase structure upon adding fermions \rightarrow no exact solution \rightarrow Hamiltonian-based simulations

For more details, see arXiv:

Peng, Diamantini, **LF**, Hassan, Jansen, Kühn, Luo, Naredi, "Hamiltonian Lattice Formulation of Compact Maxwell-Chern-Simons Theory", arXiv:2407.20225

Workshop Advertisement

New algorithms: machine learning **Applications outside of particle physics:** lattice ↔ chemistry

Thanks to my collaborators and my group

Changnan Peng**tang Pengkatan Di Luo** Maxim Metlitski Cristina Diamantini (MIT) (MIT) (MIT) (U. Perugia)

Karl Jansen Stefan Kühn Pranay Naredi Syed Muhammad Cyprus Inst.) (Cyprus Inst.)

Thanks to you for listening! Questions?

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 1997 100 30 July 2024

Backup: Hamiltonian Simulations of Topological Terms

State-of-the-Art Numerical Results for 3+1D θ **-Term**

Markov Chain Monte Carlo Sign problem: No simulation of topological terms

Tensor networks 1 Simulation of θ -term for 1+1D compact QED, CP(1), ...

Quantum computing ² Simulation of θ -term for 1+1D compact QED

Exact diagonalization ³ Simulation of θ -term for 3+1D compact U(1)

Why no simulations of topological terms in 2+1D? So far, no suitable lattice formulation available!

¹Byrnes et al. (2002), Buyens et al. (2017), LF, et al. (2020); Nakayama, LF, et al. (2022); LF, et al. (2023); ... ²Thomson, Siopsis (2022); Angelides et al. (2023); ³Kan, LF, et al. (2021); …

Backup: Monopole Problem of Compact MCS Theory

Compact Maxwell Theory

Existence of quantized magnetic fluxes:

$$
\int_{\Sigma}dA\in 2\pi\mathbb{Z}
$$

If closed surface is contractible, **monopole** inside

Compact MCS Theory

Monopole configuration: large gauge transformation \rightarrow changes Chern-Simons action \rightarrow boundary terms at spatial infinity → action **violates gauge invariance**

1+1D Lattice Theories Modified Villain Approach

Conventional Villain Approach

Add discrete plaquette variables n , encode magnetic flux Interpret n as discrete gauge fields for shift symmetry:

$$
A_0 \to A_0 + \frac{2\pi}{d\tau}, \quad A_i \to A_i + \frac{2\pi}{a}, \quad i = 1, 2
$$

Gauge the discrete shifts \rightarrow study compact gauge theory:

$$
U(1)=\mathbb{R}/2\pi\mathbb{Z}
$$

Modified Villain Approach Eliminate monopoles with Lagrange multiplier

Backup: 2+1D QED Hamiltonian With(out) Monopoles

2+1D Compact QED … Villain Approximation

… including monopoles / instantons

$$
H = \frac{e^2}{2a^2} \sum_{\text{links}} E_i^2 + \frac{1}{e^2 a^2} \sum_{\text{plaquettes}} \left(1 - \cos a^2 B \right)
$$

… with monopoles / instantons removed

Compact variables

For compact θ_i , action contains terms $\cos(\sum_i c_i \theta_i)$

Conventional Villain approach

Replace cosine terms by periodic Gaussian potential:

$$
e^{\beta \cos(\theta)} \approx \sum_{n=-\infty}^{\infty} e^{-\frac{\tilde{\beta}}{2}(\theta + 2\pi n)^2}
$$

 \rightarrow discrete gauge fields *n* can take values in ($-\infty$, $+\infty$) \rightarrow compactness ensured by constraints on Hilbert space

Modified Villain approach

Lagrange multiplier constrains gauge fields n to be flat

Backup: Constraints on Hilbert Space

Local Gauge Transformations Large Gauge Transformations

Gauss' law

Constraints on physical states in Hilbert space:

 $e^{i\lambda \hat{G}}|\psi\rangle = |\psi\rangle, \quad \forall \lambda \in \mathbb{R}, \quad [\hat{H}, \hat{G}] = 0$

Generator for local gauge transformations

Similar as for QED, but modified by Chern-Simons term:

Two additional constraints

$$
e^{2\pi i \hat{L}_1} |\psi\rangle = e^{i\theta_1} |\psi\rangle, \quad e^{2\pi i \hat{L}_2} |\psi\rangle = e^{i\theta_2} |\psi\rangle
$$

 \rightarrow compactify gauge field configurations \rightarrow similar as for QED (without monopoles)

Generators for large gauge transformations Similar as for QED, but modified by Chern-Simons term \rightarrow enforce quantized Chern-Simons coupling

Backup: Compactification Through Constraints

Constraints on Hilbert space …

 $e^{2\pi i \hat{L}_i}|\psi\rangle = e^{i\theta_i}|\psi\rangle$

… allow only certain gauge field configurations

$$
\hat{L}_i|\psi\rangle\,=\,\left(\tfrac{\theta_i}{2\pi}+m_i\right)|\psi\rangle,\,\,m_i\,\in\,\mathbb{Z},\,\,i\,=\,1,2
$$

Different topological sectors of theory

Transformation $|\psi\rangle \rightarrow e^{2\pi i \tilde{L}_j} |\psi\rangle$

... changes sector
$$
m_i \rightarrow m_i + k \epsilon_{ij}
$$

… due to non-zero commutator $\ [\hat{L}_1, \hat{L}_2] = -\frac{k}{2\pi}i$

Large Gauge Transformations Invariance of Partition Function

Partition function

Sum over all sectors / values of m_i with equal weights \rightarrow stays invariant under large gauge transformations

Similarity to Villain approximation:

$$
e^{\beta \cos(\theta)} \approx \sum_{n=-\infty}^{\infty} e^{-\frac{\tilde{\beta}}{2}(\theta + 2\pi n)^2}
$$

 \rightarrow obtain periodic function (i.e., compact gauge field) by summing over multiple non-periodic functions

Numerical simulation

Truncation of infinite sum, neglect terms with large n

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 1994 and 30 July 2024

Backup: Large Gauge Transformation Constraint #1

2+1D Compact QED … … With Chern-Simons Term

Constraint on Hilbert space

$$
e^{2\pi i \hat{L}_1}|\psi\rangle = e^{i\theta_1}|\psi\rangle
$$

Generator for large gauge transformation

$$
\hat{L}_1 = \cdots \qquad \qquad \bigg\uparrow \qquad \bigg\uparrow \frac{1}{a} \hat{p}_2 \quad \cdots
$$

$$
= \frac{1}{a} \sum_{x_1=0}^{N_1-1} \hat{p}_{(x_1, N_2-1);2}
$$

Modified generator for large gauge transformation

Backup: Large Gauge Transformation Constraint #2

2+1D Compact QED … … With Chern-Simons Term

Constraint on Hilbert space

$$
e^{2\pi i \hat{L}_2}|\psi\rangle = e^{i\theta_2}|\psi\rangle
$$

Generator for large gauge transformation

$$
\hat{L}_2 = \frac{\frac{1}{a}\hat{p}_1}{\longrightarrow} = \frac{1}{a} \sum_{x_2=0}^{N_2-1} \hat{p}_{(N_1-1,x_2);1}
$$

Modified generator for large gauge transformation

Backup: Compatibility of Constraints

Constraints need to commute with Hamiltonian

 $[\hat{H}, \hat{G}] = 0$ $[\hat{H}, \hat{L}_i] = 0, \quad i = 1, 2$

Constraints need to commute with Gauss' law

 $[\hat{G}, \hat{L}_i] = 0, \quad i = 1, 2$

But: constraints do not commute with each other!

$$
[\hat{L}_1, \hat{L}_2] = -\frac{k}{2\pi}i
$$

Commutators Quantization of Chern-Simons Level

Non-zero commutator yields quantization condition! Constraint from large gauge transformations:

$$
e^{2\pi i \hat{L}_1} e^{2\pi i \hat{L}_2} = \stackrel{\frown}{e}^{2\pi i k} e^{2\pi i \hat{L}_2} e^{2\pi i \hat{L}_1}
$$

Correctly reproduces quantization property: ¹

$$
e^{2\pi i k} = 1 \qquad \Longrightarrow \ k \in \mathbb{Z}
$$

¹ Pisarski (1986)

Backup: Plaquette Visualization of Lattice Hamiltonian

Compact MCS Hamiltonian

Magnetic field term: similar to QED (without monopoles) **Electric field term:** modified by Chern-Simons term

Lena Funcke (University of Bonn) Maxwell-Chern-Simons Theory 30 July 2024