

Simulating the Hubbard Model with Normalizing Flows

University of Bonn, TRA Matter, HISKP (Helmholtz-Institute of Radiation and Nuclear Physics)

FRIEDRICH-WILHELMS-**UNIVERSITÄT BONN**

TRANSDISCIPLINARY RESEARCH AREA

Dominic Schuh

Hubbard Model

$$H = -\kappa \sum_{\langle x, y \rangle} (a_{x,\uparrow}^{\dagger} a_{y,\uparrow} + a_{x,\downarrow}^{\dagger} a_{y,\downarrow}) - \frac{U}{2} \sum_{x} (n_{x,\uparrow} - n_{x,\downarrow})^{2}$$

tight-binding on-site interaction

- Used to describe carbon nanomaterial, e.g. graphene
- Apply Hubbard-Stratanovich transformation to describe the system with bosonic auxiliary fields ϕ

$$S = \frac{1}{2\tilde{U}} \sum_{x,t} \phi_{x,t}^2 - \log \det M[\phi] - \log \det M[-\phi]$$

Dominic Schuh - University of Bonn

 $N_x = 2, N_t = 1, \epsilon = 0.1, a = 99.8 \%$

Dominic Schuh - University of Bonn

$$N_x = 2, N_t = 1$$

 $N_x = 2, N_t = 1, \epsilon = 0.1, a = 99.8\%$

Dominic Schuh - University of Bonn

2, $N_t = 1$, $\epsilon = 0.5$, a = 96.5 %

$$N_x = 2, N_t = 1$$

$$N_x = 2, N_t = 1, \epsilon = 0.1, a = 99.8\%$$

Dominic Schuh - University of Bonn

1, $\epsilon = 1.0$, a = 87.2%

$$N_x = 2, N_t =$$

$$N_x = 2, N_t = 1, \epsilon = 0.1, a = 99.8 \%$$

Dominic Schuh - University of Bonn

1,
$$\epsilon = 0.5$$
, $a = 96.5$ %

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Build a layerwise transformation

<u>Advantages</u>

- Embarrassingly parallel sampling
- Independent and identically distributed (i.i.d) samples -> small autocorrelation times
- ^o Correctly normalized distribution \rightarrow estimation of thermodynamic observables

Dominic Schuh - University of Bonn

Already been applied to :

- o 3+1D LQCD Abbot, et al., 2024
- Fermionic lattice field theories Albergo, et al., 2021
- o Thermodynamic observables Nicoli, et. al., 2020
- o ϕ^4 -Theory Albergo, et al., 2019
- 0

Result: Hubbard Model with Normalizing Flows

Dominic Schuh - University of Bonn

$$N_x = 2, N_t = 1$$

70.1% effective sampling size

Result: Hubbard Model with Normalizing Flows

Dominic Schuh - University of Bonn

$$N_x = 2, N_t = 1$$

70.1% effective sampling size

74.2% acceptance rate

$$\tau = 1.19 \pm 0.04$$

 $\tau_{\rm HMC} = 443 \pm 136$

Result: Hubbard Model with Normalizing Flows

Dominic Schuh - University of Bonn

 $N_x = 2, N_t = 2$

Prior Distribution

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

 $z \sim q_Z$

Dominic Schuh - University of Bonn

See also: J. Köhler et al., 2020, D. Boyda et al., 2021

Prior distribution

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Spacetime Symmetry

$$(z_1, z_2) \rightarrow \begin{cases} (z_1, z_2) & \text{if } z_1 - z_2 \leq \\ (z_2, z_1) & \text{else} \end{cases}$$

Dominic Schuh - University of Bonn

Periodicity Symmetry

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Dominic Schuh - University of Bonn

Results: Equivariant Flow

Dominic Schuh - University of Bonn

$$N_x = 2, N_t = 1$$

92.3% effective sampling size

Results: Reweighted Equivariant Flow

Dominic Schuh - University of Bonn

$$N_x = 2, N_t = 1$$

92.3% effective samplin
84.8% acceptance rate
 $\tau = 0.72 \pm 0.02$
 $\tau_{\rm HMC} = 443 \pm 136$

Results: Equivariant Flow

Dominic Schuh - University of Bonn

$$N_x = 2, N_t = 2$$

73.9% effective sampling size

Results: Reweighted Equivariant Flow

Dominic Schuh - University of Bonn

$$N_x = 2, N_t = 2$$

73.9% effective sampling size

69.4% acceptance rate

 $\tau = 1.19 \pm 0.04$

Summary and Outlook

- For the first time, applied normalizing flows to the Hubbard model
- Incorporated symmetries in the architecture
- Correctly reproduced distributions for small lattices

Outlook

- Reach larger lattices
- Calculate further observables, e.g. correlators

Dominic Schuh - University of Bonn

Summary and Outlook

- For the first time, applied normalizing flows to the Hubbard model
- Incorporated symmetries in the architecture
- Correctly reproduced distributions for small lattices

Outlook

- Reach larger lattices
- Calculate further observables, e.g. correlators

Dominic Schuh - University of Bonn

In collaboration with

Janik Kreit

Evan Berkowitz

Lena Funcke

Thomas Luu

Kim Nicoli

Poster session: Janik Kreit, Tuesday 17:15

Backup Slides

Dominic Schuh - University of Bonn

The Hubbard Action

The Hubbard action in the spin basis reads

$$S = \frac{1}{2\tilde{U}} \sum_{x,t} \phi_{x,t}^2 - \log \det$$

and in the particle-hole basis

 $S = \frac{1}{2\tilde{U}} \sum_{x,t} \phi_{x,t}^2 - \log \det M[i\phi] - \log \det M[-i\phi].$

The fermion matrix M reads

$$M^{e}[\phi]_{x't',xt} = \delta_{x',x}\delta_{t',t} - [e^{h}]_{x',x}e^{\phi_{xt}}B_{t'}\delta_{t',t+1},$$

with the hopping matrix h and $B_t = \begin{cases} -1 & \text{if } t = 0 \\ +1 & \text{else} \end{cases}$ incorporating the anti-periodic boundary conditions in time direction.

Dominic Schuh - University of Bonn

 $M[\phi] - \log \det M[-\phi],$

$$M^{d}[\phi]_{x't',xt} = (\delta_{x',x} - h_{x',x}) \,\delta_{t',t} - e^{\phi_{xt}} \delta_{x',x} B_{t'} \delta_{t',t+1},$$

Real NVP

The **RealNVP** architecture:

 $\frac{\text{Block Transformation}}{y^{l} = (y_{u}^{l}, y_{d}^{l}), \ y^{l} \in \mathbb{R}^{|\Lambda|}} \qquad \begin{cases} y_{u}^{l+1} = y_{u}^{l} \\ y_{d}^{l+1} = y_{d}^{l} \cdot e^{s(y_{u}^{l})} + y_{d}^{l} \cdot e^{s(y_{u}^{l})} \end{cases}$

<u>Splitting</u>

Tractable Jacobian Det

 $\mathbf{J}_g = \begin{bmatrix} 1 & 0 \\ \star & \mathrm{e}^{-s} \end{bmatrix}$

Dominic Schuh - University of Bonn

$$+ m(y_u^l) \xrightarrow{\text{Trivially Invertible}} \begin{cases} y_u^l = y_u^{l+1} \\ y_d^l = (y_d^{l+1} - m(y_u^{l+1}))e^{-s(y_u^{l+1})} \end{cases}$$

Checkerboard Masking

Training the Flow

- We train the normalizing flow using the Reverse-KL divergence

$$\mathrm{KL}(q_{\theta} \,|\, |p) = \int \mathscr{D}[\phi] q_{\theta}(\phi) \ln\left(\frac{q_{\theta}(\phi)}{p(\phi)}\right) = \beta(F_q - F)$$

- Ignoring the irrelevant (and unknown) constant F, the loss reads

$$\beta F_q = \mathbb{E}_{z \sim q_Z} \left[S(g_\theta(z)) - \ln \left| \frac{\mathrm{d}g_\theta}{\mathrm{d}z} \right| (z) + \ln q_Z(z) \right]$$

Dominic Schuh - University of Bonn

Neural Importance Sampling (NIS)

1. We define the unnormalized importance weights $\tilde{w}(\phi) = \frac{\tilde{p}(\phi)}{q_{\theta}(\phi)} = \frac{\tilde{p}(\phi)}{q_{\theta}(\phi)}$

2. We estimate the partition function $Z = \int D[\phi] q_{\theta}(\phi) \tilde{w}(\phi) \approx \hat{Z} =$

3. From which we have direct access to the free energy $\hat{F} = -T \ln \hat{Z}$

4. And other thermodynamic observables like pressure $p = -\frac{F}{V}$ and entropy $H = \beta(-F + U)$

Dominic Schuh - University of Bonn

$$=\frac{\exp(-S(\phi))}{q_{\theta}(\phi)}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \tilde{w}(\phi_i)$$

NMCMC: Neural Markov Chain Monte Carlo

Standard MCMC updates a system configuration by proposing a new candidate configuration following the evolution of the chain

Configurations are thus accepted based on accept/reject algorithm

In **NMCMC** the idea is to take ne candidates drawn from the trained sampler q(s)

$$\min\left(1, \frac{p_0(s \mid s') \, p(s')}{p_0(s' \mid s) \, p(s)}\right) = \min\left(1, \frac{q(s) \, \exp(-\beta H(s'))}{q(s') \, \exp(-\beta H(s))}\right)$$

Low dependence between new candidates and previous elements in the chain. This leads to:

• Efficient and parallel sampling

New estimates have very small autocorrelation time

Dominic Schuh - University of Bonn

See also: M. S. Albergo et al., 2019

Equivariant Flow Output

Dominic Schuh - University of Bonn

 $N_x = 2, N_t = 1$

Outlook: Larger Lattice Sizes

Current lattice sizes for the honeycomb lattice:

- HMC: $2 \times 21 \times 21$ sites
- Exact diagonalization: $2 \times 3 \times 3$ sites
- Tensor networks, e.g. PEPS: $2 \times 15 \times 15$ sites

Dominic Schuh - University of Bonn

See also: J. Ostmeyer, Lattice 2022

Comparison

	HMC	Fermionic PEPS	Exact Diagonalization	Normalizing Flows
Lattice Size	L ≈ 100	L ≈ 15	L ≲ 3	L ≈ 2 (for now)
Sign problem	Yes	No	No	Yes
Performance	GPU-intensive	RAM-intensive	CPU-intensive	GPU-intensive
Excited States	Few lowest, expensive	Some specific, instabilities	Yes	Few lowest, expensive

Dominic Schuh - University of Bonn

See also: J. Ostmeyer, Lattice 2022

