

HUBBARD INTERACTION AT FINITE T on a hexagonal lattice

July 30, 2024 | Lado Razmadze, Tom Luu | Forschungszentrum Jülich

Member of the Helmholtz Association

Introduction

Motivation

- Characteristic temperature \sim Energy of the lowest modes ${\cal E}$

LQCD:

- $m_\pi pprox$ 150MeV
- For $T \ll m_{\pi}$ assume $T = 0 \Rightarrow$ no temporal finite volume effects
- At $T \approx m_{\pi}$ thermal field theory is applicable
- TFT is used to study nuclear matter, quark-gluon plasma [Le Bellac '96, Kapusta '06]
- Physical lattices:
 - Usually $T \approx \mathcal{E}$
 - Graphene K-points, Topological insulators...
 - Vanishing dispersion i.e. $\mathcal{E} = 0 \Rightarrow \text{TFT}$ relevant for all T.
 - Perturbative treatment is tricky
- Preferable to work with inverse temperature $\beta = 1/T$

Introduction

Hubbard Model

Hubbard at half-filling

$$H=-\kappa\sum_{\langle x,y
angle ext{s}}c_{x ext{s}}^{\dagger}c_{y ext{s}}-rac{U}{2}\sum_{x}(c_{x\uparrow}^{\dagger}c_{x\uparrow}-c_{x\downarrow}^{\dagger}c_{x\downarrow})^{2}$$

- κ Hopping strength
- U On site Hubbard interaction

Introduction

Hubbard Model cont'd

Momentum basis

$$H = H_{0} + H_{1} + H_{2}$$

$$= -\sum \sigma \mathcal{E}_{k} \phi_{k\sigma s}^{\dagger} \phi_{k\sigma s} + \underbrace{-\frac{U}{2} \sum \phi_{k\sigma s}^{\dagger} \phi_{k\sigma s}}_{\sim ----} + \underbrace{\sum V_{k'l'kl}^{\rho'\sigma'\rho\sigma} \phi_{k'\rho'\uparrow}^{\dagger} \phi_{l'\sigma'\downarrow}^{\dagger} \phi_{k\rho\downarrow} \phi_{l\sigma\uparrow}}_{\sim -----}$$

$$V_{k'l'kl}^{\rho'\sigma'\rho\sigma} \propto U$$

- ρ, σ Bands (±1 \rightarrow particle/hole)
- *k*, *I* Momenta in Brillouin Zone
- *H*₀ Non-interacting system
 *H*₁ + *H*₂ [!] = *H*₁ Perturbing interaction

Propagator

• Thermal expectation value \Rightarrow Physical quantities

$$\langle \hat{\mathcal{O}} \rangle_0 = Z_0^{-1} \text{Tr} \left[e^{-\beta H_0} \hat{\mathcal{O}} \right], \quad Z_0 = \text{Tr} \left[e^{-\beta H_0} \right] - \text{Partition function}$$

Propagator

• Thermal expectation value \Rightarrow Physical quantities

$$\langle \hat{\mathcal{O}} \rangle_0 = Z_0^{-1} \text{Tr} \left[e^{-\beta H_0} \hat{\mathcal{O}} \right], \quad Z_0 = \text{Tr} \left[e^{-\beta H_0} \right] - \text{Partition function}$$

Non-interacting (Bare) propagator

$$G^0_{k\sigma s}(i\omega) = -\int_0^eta d au \; e^{i\omega au} \left\langle \mathcal{T}_{ au}[\phi_{k\sigma s}(au)\phi^\dagger_{k\sigma s}(0)]
ight
angle_0 = rac{1}{i\omega - \sigma \mathcal{E}_k} \sim - igtarrow$$

- Imaginary time $\tau = it \Rightarrow$ imaginary frequencies $i\omega = i\frac{\pi(2n+1)}{\beta}$, $n \in \mathbb{Z}$
- T_{τ} time ordering operator, arranging operators in decreasing order of τ

Propagator

• Thermal expectation value \Rightarrow Physical quantities

$$\langle \hat{\mathcal{O}} \rangle_0 = Z_0^{-1} \text{Tr} \left[e^{-\beta H_0} \hat{\mathcal{O}} \right], \quad Z_0 = \text{Tr} \left[e^{-\beta H_0} \right] - \text{Partition function}$$

Non-interacting (Bare) propagator

$$G^0_{k\sigma s}(i\omega) = -\int_0^eta d au \; e^{i\omega au} \left\langle T_ au[\phi_{k\sigma s}(au)\phi^\dagger_{k\sigma s}(0)]
ight
angle_0 = rac{1}{i\omega - \sigma \mathcal{E}_k} \sim - igta$$

- Imaginary time $\tau = it \Rightarrow$ imaginary frequencies $i\omega = i\frac{\pi(2n+1)}{\beta}$, $n \in \mathbb{Z}$
- $T_{ au}$ time ordering operator, arranging operators in decreasing order of au
- Fermi-Dirac distribution

$$n_{k\sigma} \stackrel{!}{=} rac{1}{eta} \sum_{i\omega} G^0_{k\sigma s}(i\omega) = rac{1}{e^{\sigmaeta \mathcal{E}_k} + 1}$$

Propagator

Interacting (Full) propagator

S-matrix is defined as

$$S(eta) = T_ au \exp\left\{-\int_0^eta H_l(au') d au'
ight\}$$

Propagator

Interacting (Full) propagator

S-matrix is defined as

$$S(\beta) = T_{\tau} \exp\left\{-\int_{0}^{\beta} H_{l}(\tau') d\tau'\right\}$$

$$\xrightarrow{\text{Expand in } U} = \sum_{m=0}^{\infty} \frac{(-)^{m}}{m!} \int_{0}^{\beta} d\tau_{1} \cdots \int_{0}^{\beta} d\tau_{m} T_{\tau} [H_{l}(\tau_{1}) \cdots H_{l}(\tau_{m})]$$

Wick Contraction

• S-matrix expansion \Rightarrow Thermal average of the field products

$$\left\langle T_{\tau}[H_{l}(\tau_{1})\cdots H_{l}(\tau_{m})\phi(\tau)\phi^{\dagger}]\right\rangle_{0}\propto \left\langle T_{\tau}[\phi_{1}\ \phi_{2}\ \cdots \phi_{1}^{\dagger},\phi_{2'}^{\dagger}\cdots]\right\rangle_{0}$$

Define Wick contraction

$$\overline{\phi_1} \phi_{1\prime}^{\dagger} \stackrel{!}{=} \left\langle T_{\tau} [\phi_1 \phi_{1\prime}^{\dagger}] \right\rangle_0 = -G_1^0 \delta_{1 1\prime}$$

Then one can write

$$\left\langle T_{\tau} [\phi_1 \phi_2 \cdots \phi_{1'}^{\dagger} \phi_{2'}^{\dagger} \cdots] \right\rangle_0 = \phi_1 \phi_2 \cdots \phi_{1'}^{\dagger} \phi_{2'}^{\dagger} \cdots + \phi_1 \phi_2 \cdots \phi_{1'}^{\dagger} \phi_{2'}^{\dagger} \cdots$$

Diagrams

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
 - Denote the sum of all 1-PI diagrams with $\boldsymbol{\Sigma}$

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
 - Denote the sum of all 1-PI diagrams with Σ
 - Dyson equation relates G to G^0 and Σ

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
 - Denote the sum of all 1-PI diagrams with Σ
 - Dyson equation relates G to G^0 and Σ

Solve for G

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
 - Denote the sum of all 1-PI diagrams with Σ
 - Dyson equation relates G to G^0 and Σ

• Pole of the full propagator \Rightarrow Interacting self-energy \mathcal{E}^*

 $\mathcal{E}^* - \mathcal{E} - \Sigma(\mathcal{E}^*) = 0$ – Quantization condition

Vanishing Diagrams

• $\mathcal{O}(U)$: Linear correction vanishes at half-filling

• $\mathcal{O}(U^2)$: Similar diagrams vanish for the second order

General Lattice

- We have used shorthand
 - $\pm \mathbf{k} = (\mathbf{k}, \pm \rho)$
 - $\mathcal{E}_{k} = \rho \mathcal{E}_{k}$
- Only momentum conservation was assumed
- Exact form of \mathcal{E} and V depends on the lattice

Graphene

- Graphene:
 - Dashed rectangle Unit cell
 - 2-sites per cell A/B
 - $m \times n$ graphene $\Rightarrow 2mn$ sites

Figure: Brillouin Zone for $m \times n_{a}$

Self-Energy 2-site, 1x1 Graphene

• For 2-sites only one momentum in BZ - $\Gamma = (0, 0)$

$$\Sigma(i\omega) = \frac{U^2}{4} \left(\frac{3n_{\Gamma+}n_{\Gamma-}}{i\omega - \mathcal{E}_{\Gamma}} + \frac{1 - 3n_{\Gamma+}n_{\Gamma-}}{i\omega + 3\mathcal{E}_{\Gamma}} \right), \quad n_{\Gamma+}n_{\Gamma-} \xrightarrow{\beta \to \infty} e^{-\beta \mathcal{E}_{\Gamma}}$$

Dyson equation

$$(i\omega - \mathcal{E}_{\Gamma})^2(i\omega + 3\mathcal{E}_{\Gamma}) - \frac{U^2}{4}(i\omega - \mathcal{E}_{\Gamma} + 12n_{\Gamma+}n_{\Gamma-}\mathcal{E}_{\Gamma}) = 0$$

• Cubic polynomial in $i\omega \Rightarrow$ can be solved exactly

2-sites

 $\begin{array}{c} \textbf{2-sites} \\ \beta \rightarrow \infty \end{array}$

- Each loop $\sim e^{-\beta \mathcal{E}_{\Gamma}}$
- For $\beta \to \infty$ higher order terms vanish

LICH

4-site, 1x2 Graphene

- For 4-sites 2 momenta
 - $\Gamma = (0,0)$ • $M = (\frac{2\pi}{3},0)$
- For finite β

 $\Sigma(i\omega) =$ Quintic Polynomial

• For $\beta \to \infty \Sigma(i\omega)$ becomes a *Cubic* again

4-sites

Summary & Outlook

- In summary:
 - We found LO correction to the 2-site model
 - For $\beta \to \infty$ perturbative solution was exact
 - For finite β correlators are in good agreement with the exact solution
 - We found LO correction to the 4-site model
- Outlook:
 - Do HMC simulations for various geometries
 - Larger graphene sheets
 - Graphene nanoribbon
 - Graphene nanotube
 - Find $\beta \rightarrow \infty$ dependence and match with perturbative solutions
 - Find general expression for higher order contributions
 - Find general finite temporal volume effects and match them to calculations

Thank You!

