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Introduction
Motivation

Characteristic temperature ∼ Energy of the lowest modes E
LQCD:

mπ ≈ 150MeV

For T � mπ assume T = 0 ⇒ no temporal finite volume effects

At T ≈ mπ thermal field theory is applicable

TFT is used to study nuclear matter, quark-gluon plasma [Le Bellac ’96, Kapusta ’06]

Physical lattices:

Usually T ≈ E
Graphene K-points, Topological insulators...

– Vanishing dispersion i.e. E = 0 ⇒ TFT relevant for all T.

– Perturbative treatment is tricky

Preferable to work with inverse temperature β = 1/T
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Introduction
Hubbard Model

Hubbard at half-filling

H = −κ
∑
〈x,y〉s

c
†
xscys −

U

2

∑
x

(c†x↑cx↑ − c
†
x↓cx↓)

2

κ - Hopping strength

U - On site Hubbard interaction

s =↑, ↓ - Spin
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Introduction
Hubbard Model cont’d

Momentum basis

H = H0 + H1 + H2

= −
∑

σEkφ†
kσsφkσs +−U

2

∑
φ†
kσsφkσs︸ ︷︷ ︸

∼

+
∑

V
ρ′σ′ρσ
k′l′kl φ†

k′ρ′↑φ
†
l′σ′↓φkρ↓φlσ↑︸ ︷︷ ︸

∼
V

ρ′σ′ρσ
k′ l′kl ∝ U

ρ, σ - Bands (±1 → particle/hole)

k, l - Momenta in Brillouin Zone

H0 - Non-interacting system

H1 + H2
!
= HI - Perturbing interaction
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Perturbation
Propagator

Thermal expectation value ⇒ Physical quantities

〈Ô〉0 = Z−1
0 Tr

[
e−βH0Ô

]
, Z0 = Tr

[
e−βH0

]
− Partition function

Non-interacting (Bare) propagator

G0
kσs(iω) = −

∫ β

0

dτ eiωτ
〈
Tτ [φkσs(τ)φ

†
kσs(0)]

〉
0
=

1

iω − σEk
∼

Imaginary time τ = it ⇒ imaginary frequencies iω = i
π(2n+1)

β , n ∈ Z
Tτ - time ordering operator, arranging operators in decreasing order of τ

Fermi-Dirac distribution

nkσ
!
=

1

β

∑
iω

G0
kσs(iω) =

1

eσβEk + 1
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Perturbation
Propagator

Interacting (Full) propagator

Gkσs(iω) = −
∫ β

0

dτ eiωτ

〈
Tτ

[
S(β)φkσs(τ)φ

†
kσs

]〉
0

〈Tτ [S(β)]〉0
∼

S-matrix is defined as

S(β) = Tτ exp

{
−
∫ β

0

HI(τ
′)dτ ′

}

Expand in U−−−−−−−→ =
∞∑

m=0

(−)m

m!

∫ β

0

dτ1 · · ·
∫ β

0

dτmTτ [HI(τ1) · · ·HI(τm)]
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Perturbation
Wick Contraction

S-matrix expansion ⇒ Thermal average of the field products〈
Tτ [HI(τ1) · · ·HI(τm)φ(τ)φ

†]
〉
0
∝

〈
Tτ [φ1 φ2 · · ·φ†

1′φ
†
2′ · · · ]

〉
0

Define Wick contraction

φ1 φ
†
1′

!
=

〈
Tτ [φ1 φ

†
1′ ]
〉
0
= −G0

1δ1 1′

Then one can write〈
Tτ [φ1 φ2 · · ·φ†

1′φ
†
2′ · · · ]

〉
0
= φ1 φ2 · · ·φ†

1′φ
†
2′ · · ·+ φ1 φ2 · · ·φ†

1′φ
†
2′ · · ·
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Perturbation
Diagrams

Wick

Contraction
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Self-Energy
Dyson Equation

1-PI diagram cannot be separated by removing one propagator.
Denote the sum of all 1-PI diagrams with Σ

Dyson equation relates G to G0 and Σ

= + Σ

Solve for G

=
1

−1 − Σ

=
1

iω − E − Σ(iω)

Pole of the full propagator ⇒ Interacting self-energy E∗

E∗ − E − Σ(E∗) = 0 − Quantization condition
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Self-Energy
Vanishing Diagrams

O(U): Linear correction vanishes at half-filling

+ = 0

O(U2): Similar diagrams vanish for the second order

+ = 0
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Self-Energy
General Lattice

p,+, ω l

k

l′

∼
∑
l′kl

|Vpl′kl|2
n−l′nk + (nl′ − nk)n−l

iω − (Ek − El′ + El)

We have used shorthand

±k = (k,±ρ)
Ek = ρEk

Only momentum conservation was assumed

Exact form of E and V depends on the lattice
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Graphene

Graphene:

Dashed rectangle - Unit cell

2-sites per cell - A/B

m× n graphene ⇒ 2mn sites

2

0

2

1x1 1x2

2 0 2

2

0

2

2x3

2 0 2

12x12

Figure: Brillouin Zone for m× n
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Self-Energy
2-site, 1x1 Graphene

For 2-sites only one momentum in BZ - Γ = (0,0)

Σ(iω) =
U2

4

(
3nΓ+nΓ−
iω − EΓ

+
1− 3nΓ+nΓ−
iω + 3EΓ

)
, nΓ+nΓ−

β→∞−−−→ e−βEΓ

Dyson equation

(iω − EΓ)2(iω + 3EΓ)−
U2

4
(iω − EΓ + 12nΓ+nΓ−EΓ) = 0

Cubic polynomial in iω ⇒ can be solved exactly
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Self-Energy
2-sites

β → ∞

0

2

4

6

8
*

Perturbative solution @ 
Exact solution @ 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
U

1

0

1 1e 15
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Self-Energy
2-sites

β → ∞

Each loop ∼ e−βEΓ

For β → ∞ higher order terms vanish
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Self-Energy
2-sites

β < ∞
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Self-Energy
4-site, 1x2 Graphene

For 4-sites 2 momenta

Γ = (0,0)
M =

(
2π
3
,0

)
For finite β

Σ(iω) = Quintic Polynomial

For β → ∞ Σ(iω) becomes a Cubic again
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Self-Energy
4-sites

β → ∞
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Summary & Outlook

In summary:

We found LO correction to the 2-site model

– For β → ∞ perturbative solution was exact

– For finite β correlators are in good agreement with the exact solution

We found LO correction to the 4-site model

Outlook:

Do HMC simulations for various geometries

– Larger graphene sheets

– Graphene nanoribbon

– Graphene nanotube

Find β → ∞ dependence and match with perturbative solutions

Find general expression for higher order contributions

Find general finite temporal volume effects and match them to calculations
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Thank You!
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