

HUBBARD INTERACTION AT FINITE *T* **on a hexagonal lattice**

July 30, 2024 | Lado Razmadze, Tom Luu | Forschungszentrum Jülich

Member of the Helmholtz Association

Introduction

Motivation

■ Characteristic temperature \sim Energy of the lowest modes $\mathcal E$

LOCD:

- $m_{\pi} \approx 150$ MeV
- For $T \ll m_{\pi}$ assume $T = 0 \Rightarrow$ no temporal finite volume effects
- At $T \approx m_{\pi}$ thermal field theory is applicable
- TFT is used to study nuclear matter, quark-gluon plasma [Le Bellac '96, Kapusta '06]
- **Physical lattices:**
	- Usually $T \approx \mathcal{E}$
	- Graphene *K*-points, Topological insulators...
		- Vanishing dispersion i.e. $\mathcal{E} = 0$ ⇒ TFT relevant for all *T*.
		- Perturbative treatment is tricky
- **Preferable to work with inverse temperature** $\beta = 1/T$

Introduction

Hubbard Model

■ Hubbard at half-filling

$$
H=-\kappa\sum_{\langle x,y\rangle s}c_{xs}^{\dagger}c_{ys}-\frac{U}{2}\sum_{x}(c_{x\uparrow}^{\dagger}c_{x\uparrow}-c_{x\downarrow}^{\dagger}c_{x\downarrow})^{2}
$$

- R Hopping strength
- U On site Hubbard interaction

$$
\blacksquare s = \uparrow, \downarrow \text{- } Spin
$$

Introduction

Hubbard Model cont'd

Momentum basis

H = *H*⁰ + *H*¹ + *H*² = − XσE*k*φ † *k*σ*s* φ*k*σ*^s* + − *U* 2 Xφ † *k*σ*s* φ*k*σ*^s* | {z } ∼ + X*V* ρ 0σ ⁰ρσ *k* 0 *l* ⁰*kl* φ † *k* 0ρ 0↑ φ † *l* ⁰σ0↓ φ*k*ρ↓φ*l*σ[↑] | {z } ∼ *V* ρ 0σ ⁰ρσ *k* 0 *l* ⁰*kl* ∝ *U*

- ρ , σ Bands ($\pm 1 \rightarrow$ particle/hole)
- *k*, *l* Momenta in Brillouin Zone
- H_0 Non-interacting system $H_1+H_2 \stackrel{!}{=} H_{\mathsf{I}}$ - Perturbing interaction

 $\overline{}$

Propagator

■ Thermal expectation value \Rightarrow Physical quantities

$$
\langle \hat{\mathcal{O}} \rangle_0 = Z_0^{-1} \text{Tr} \left[e^{-\beta H_0} \hat{\mathcal{O}} \right], \quad Z_0 = \text{Tr} \left[e^{-\beta H_0} \right] - \text{Partition function}
$$

Propagator

■ Thermal expectation value \Rightarrow Physical quantities

$$
\langle \hat{\mathcal{O}} \rangle_0 = Z_0^{-1} \text{Tr} \left[e^{-\beta H_0} \hat{\mathcal{O}} \right], \quad Z_0 = \text{Tr} \left[e^{-\beta H_0} \right] - \text{Partition function}
$$

■ Non-interacting (Bare) propagator

$$
G^0_{k\sigma s}(i\omega) = -\int_0^\beta d\tau \; e^{i\omega\tau} \left\langle T_\tau[\phi_{k\sigma s}(\tau) \phi^\dagger_{k\sigma s}(0)] \right\rangle_0 = \frac{1}{i\omega - \sigma \mathcal{E}_k} \sim \quad \longrightarrow
$$

- Imaginary time $\tau = i t \Rightarrow$ imaginary frequencies $i\omega = i \frac{\pi(2n+1)}{3}$ $\frac{(n+1)}{\beta}$, $n \in \mathbb{Z}$
- \blacksquare T_{τ} time ordering operator, arranging operators in decreasing order of τ

Propagator

■ Thermal expectation value \Rightarrow Physical quantities

$$
\langle \hat{\mathcal{O}} \rangle_0 = Z_0^{-1} \text{Tr} \left[e^{-\beta H_0} \hat{\mathcal{O}} \right], \quad Z_0 = \text{Tr} \left[e^{-\beta H_0} \right] - \text{Partition function}
$$

■ Non-interacting (Bare) propagator

$$
G^0_{k\sigma s}(i\omega)=-\int_0^\beta d\tau\; e^{i\omega\tau}\left\langle T_\tau[\phi_{k\sigma s}(\tau)\phi^\dagger_{k\sigma s}(0)]\right\rangle_0=\frac{1}{i\omega-\sigma\mathcal{E}_k}\sim\quad \blacktriangleright
$$

- Imaginary time $\tau = i t \Rightarrow$ imaginary frequencies $i\omega = i \frac{\pi(2n+1)}{3}$ $\frac{(n+1)}{\beta}$, $n \in \mathbb{Z}$
- \blacksquare T_{τ} time ordering operator, arranging operators in decreasing order of τ
- **Fermi-Dirac distribution**

$$
n_{k\sigma} \stackrel{!}{=} \frac{1}{\beta} \sum_{i\omega} G^0_{k\sigma s}(i\omega) = \frac{1}{e^{\sigma\beta \mathcal{E}_k} + 1}
$$

Propagator

Interacting (Full) propagator

$$
G_{k\sigma s}(i\omega) = -\int_0^\beta d\tau \; e^{i\omega\tau} \frac{\langle \mathcal{T}_\tau \left[S(\beta) \phi_{k\sigma s}(\tau) \phi^\dagger_{k\sigma s} \right] \rangle_0}{\langle \mathcal{T}_\tau \left[S(\beta) \right] \rangle_0} \quad \sim \quad \boxed{\qquad }
$$

S-matrix is defined as

$$
S(\beta) = T_{\tau} \exp \left\{-\int_0^{\beta} H_I(\tau') d\tau'\right\}
$$

Propagator

Interacting (Full) propagator

$$
G_{k\sigma s}(i\omega) = -\int_0^\beta d\tau \; e^{i\omega\tau} \frac{\langle \mathcal{T}_\tau \left[S(\beta) \phi_{k\sigma s}(\tau) \phi^\dagger_{k\sigma s} \right] \rangle_0}{\langle \mathcal{T}_\tau \left[S(\beta) \right] \rangle_0} \quad \sim \quad \boxed{\qquad }
$$

S-matrix is defined as

$$
S(\beta) = T_{\tau} \exp \left\{-\int_{0}^{\beta} H_{l}(\tau') d\tau'\right\}
$$

\n
$$
\xrightarrow{\text{Expand in } U} = \sum_{m=0}^{\infty} \frac{(-)^{m}}{m!} \int_{0}^{\beta} d\tau_{1} \cdots \int_{0}^{\beta} d\tau_{m} T_{\tau}[H_{l}(\tau_{1}) \cdots H_{l}(\tau_{m})]
$$

Wick Contraction

■ S-matrix expansion \Rightarrow Thermal average of the field products

$$
\left\langle T_{\tau}[H_I(\tau_1)\cdots H_I(\tau_m)\phi(\tau)\phi^{\dagger}]\right\rangle_0 \propto \left\langle T_{\tau}[\phi_1\phi_2\ \cdots\phi_1^{\dagger}\phi_2^{\dagger}\cdots]\right\rangle_0
$$

Define Wick contraction

$$
\overleftrightarrow{\phi_1\,\phi_{1'}^\dagger} \stackrel{!}{=} \Big\langle {\cal T}_\tau [\phi_1\,\phi_{1'}^\dagger] \Big\rangle_0 = - {\cal G}^0_1 \delta_{1\;1'}
$$

Then one can write

$$
\left\langle T_{\tau}[\phi_1\ \phi_2\ \cdots\phi_{1'}^{\dagger}\phi_{2'}^{\dagger}\cdots]\right\rangle_0 = \overline{\phi_1\ \phi_2\ \cdots\phi_{1'}^{\dagger}\phi_{2'}^{\dagger}}\cdots + \overline{\phi_1\ \phi_2\ \cdots\phi_{1'}^{\dagger}\phi_{2'}^{\dagger}}\cdots
$$

Diagrams

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
	- Denote the sum of all 1-PI diagrams with Σ

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
	- Denote the sum of all 1-PI diagrams with Σ
	- Dyson equation relates *G* to *G*⁰ and Σ

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
	- Denote the sum of all 1-PI diagrams with Σ
	- Dyson equation relates *G* to *G*⁰ and Σ

■ Solve for *G*

Dyson Equation

- 1-PI diagram cannot be separated by removing one propagator.
	- Denote the sum of all 1-PI diagrams with Σ
	- Dyson equation relates *G* to *G*⁰ and Σ

Pole of the full propagator \Rightarrow Interacting self-energy \mathcal{E}^*

 $\mathcal{E}^* - \mathcal{E} - \Sigma(\mathcal{E}^*) = 0$ – Quantization condition

 $\mathcal{O}(U)$: Linear correction vanishes at half-filling

 $\mathcal{O}(U^2)$: Similar diagrams vanish for the second order

General Lattice

- We have used shorthand
	- $\blacksquare \pm \mathbf{k} = (k, \pm \rho)$

$$
\blacksquare \mathcal{E}_k = \rho \mathcal{E}_k
$$

- Only momentum conservation was assumed
- Exact form of $\mathcal E$ and V depends on the lattice

Graphene

- Graphene:
	- Dashed rectangle Unit cell
	- 2-sites per cell A/B
	- *m* × *n* graphene ⇒ 2*mn* sites

Figure: Brillouin Zone for $m \times n$

For 2-sites only one momentum in BZ - $\Gamma = (0, 0)$

$$
\Sigma(i\omega) = \frac{U^2}{4} \left(\frac{3n_{\Gamma+}n_{\Gamma-}}{i\omega - \mathcal{E}_{\Gamma}} + \frac{1 - 3n_{\Gamma+}n_{\Gamma-}}{i\omega + 3\mathcal{E}_{\Gamma}} \right), \quad n_{\Gamma+}n_{\Gamma-} \xrightarrow{\beta \to \infty} e^{-\beta \mathcal{E}_{\Gamma}}
$$

Dyson equation

$$
(i\omega - \mathcal{E}_{\Gamma})^2 (i\omega + 3\mathcal{E}_{\Gamma}) - \frac{U^2}{4} (i\omega - \mathcal{E}_{\Gamma} + 12n_{\Gamma+}n_{\Gamma-} \mathcal{E}_{\Gamma}) = 0
$$

■ Cubic polynomial in $i\omega \Rightarrow$ can be solved exactly

2-sites

2-sites $\beta \to \infty$

- Each loop $\sim e^{-\beta \mathcal{E}_{\Gamma}}$
- For $\beta \to \infty$ higher order terms vanish

- **For 4-sites 2 momenta**
	- $\blacksquare \Gamma = (0,0)$ $M = (\frac{2\pi}{3}, 0)$
- For finite β

Σ(*i*ω) = Quintic Polynomial

■ For $\beta \to \infty$ Σ(*iω*) becomes a *Cubic* again

4-sites

ICH

Summary & Outlook

- \blacksquare In summary:
	- We found LO correction to the 2-site model
		- For $\beta \to \infty$ perturbative solution was exact
		- For finite β correlators are in good agreement with the exact solution
	- \blacksquare We found LO correction to the 4-site model
- Outlook:
	- Do HMC simulations for various geometries
		- Larger graphene sheets
		- Graphene nanoribbon
		- Graphene nanotube
	- **Find** $\beta \rightarrow \infty$ dependence and match with perturbative solutions
	- Find general expression for higher order contributions
	- Find general finite temporal volume effects and match them to calculations

Thank You!

