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EXCITON

• An exciton is a bound state of an electron and a hole

▪ Bosonlike quasi-particle with a net charge zero

• Formed when the binding energy of the electron-

hole pair is larger than the band gap

• Good candidates for the development of 

topologically protected qubits, switching devices, 

and heat exchangers
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We need non-perturbative 
calculations for bound states



THE HUBBARD MODEL

• 𝑝†, 𝑝 : creation/annihilation operators for particles

• ℎ†, ℎ : creation/annihilation operators for holes

• 𝜅 : hopping parameter

• 𝑈 : on-site interaction

• 𝑞𝑥 = 𝑛𝑥
𝑝

 − 𝑛𝑥
ℎ ≡ 𝑝𝑥

†𝑝𝑥 − ℎ𝑥
†ℎ𝑥 : local charge

• 𝜇 : chemical potential
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THE HUBBARD MODEL

• An exact solution exists for non-interacting case at half-filling

𝐸𝑘± = ± −𝜅 3 + 2 cos
3

2
𝑘𝑥 +

3

2
𝑘𝑦 + cos

3

2
𝑘𝑥 −

3

2
𝑘𝑦 + cos( 3𝑘𝑦)  

• It gives rise to a two-band structure

• We can calculate all multi-particle energies

Non-Interacting case
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More interesting when we turn on interactions



THE HUBBARD MODEL
One-body band gap
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THE HUBBARD MODEL
One-body band gap
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J. Ostmeyer et al., arXiv:2005.11112

J. Ostmeyer et al., Phys. Rev. B 102 (2020) 245105

One-body gap forms at 𝑈𝑐 ≅ 3.835

What happens with two-body states?



CORRELATION FUNCTIONS

         𝐶(𝑡) = 𝒪(𝑡)𝒪†(0)  

• The Hubbard model can have single-electron excitations, while QCD does not have single-quark excitations

• We can construct from these one-body operators all two-body operators

Two-point correlation functions
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𝑆𝑧 = 1/2 𝑆𝑧 = 1/2

𝐼𝑧 = 1/2 𝑝† ℎ

𝐼𝑧 = −1/2 ℎ† 𝑝

𝐼 = 1/2, 𝑆 = 1/2
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CORRELATION FUNCTIONS
Two-body correlation functions
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CORRELATION FUNCTIONS
Two-body correlation functions
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CORRELATION FUNCTIONS
Two-body correlation functions

Page 9

𝑆𝑧 = 0

𝐼𝑧 = 0
(𝑄 = 0)

1

2
(𝑝𝑘𝑝𝑙

† + 𝑝𝑘
†𝑝𝑙 + ℎ𝑘ℎ𝑙

† + ℎ𝑘
†ℎ𝑙)

𝑆𝑧 = 1 𝑆𝑧 = 0 𝑆𝑧 = −1

𝐼𝑧 = 1
(𝑄 = 2)

𝑝𝑘
†𝑝𝑙

† 1

2
(𝑝𝑘

†ℎ𝑙 + ℎ𝑘𝑝𝑙
†) ℎ𝑘ℎ𝑙

𝐼𝑧 = 0
(𝑄 = 0)

1

2
(𝑝𝑘

†ℎ𝑙
† + ℎ𝑘

†𝑝𝑙
†)

1

2
(𝑝𝑘𝑝𝑙

† + 𝑝𝑘
†𝑝𝑙 − ℎ𝑘ℎ𝑙

† − ℎ𝑘
†ℎ𝑙)

1

2
(𝑝𝑘ℎ𝑙 + ℎ𝑘𝑝𝑙)

𝐼𝑧 = −1
(𝑄 = −2)

ℎ𝑘
†ℎ𝑙

† 1

2
(𝑝𝑘ℎ𝑙

† + ℎ𝑘
†𝑝𝑙) 𝑝𝑘𝑝𝑙

𝑆𝑧 = 0

𝐼𝑧 = 1
(𝑄 = 2)

1

2
(𝑝𝑘

†ℎ𝑙 − ℎ𝑘𝑝𝑙
†)

𝐼𝑧 = 0
(𝑄 = 0)

1

2
(𝑝𝑘

†𝑝𝑙 − 𝑝𝑘𝑝𝑙
† + ℎ𝑘ℎ𝑙

† − ℎ𝑘
†ℎ𝑙)

𝐼𝑧 = −1
(𝑄 = −2)

1

2
(𝑝𝑘ℎ𝑙

† − ℎ𝑘
†𝑝𝑙)

𝑆𝑧 = 1 𝑆𝑧 = 0 𝑆𝑧 = −1

𝐼𝑧 = 0
(𝑄 = 0)

1

2
𝑝𝑘

†ℎ𝑙
† − ℎ𝑘

†𝑝𝑙
† 1

2
(𝑝𝑘𝑝𝑙

† − 𝑝𝑘
†𝑝𝑙 + ℎ𝑘ℎ𝑙

† − ℎ𝑘
†ℎ𝑙)

1

2
(𝑝𝑘ℎ𝑙 − ℎ𝑘𝑝𝑙)

𝐼 = 0, 𝑆 = 0 𝐼 = 0, 𝑆 = 1

𝐼 = 1, 𝑆 = 0 𝐼 = 1, 𝑆 = 1

Results in these channels

30 July 2024



CORRELATION FUNCTIONS
Two-body correlation functions
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We expect 𝐼𝑧 = ±1 to be repulsive while 𝐼𝑧 = 0 to be attractive



HONEYCOMB LATTICE

• Bipartite lattice

• Two triangular lattices

• Every lattice site has a neighbor from the other sublattice

• We work in momentum space

• Momenta modes of interest are – Γ, K, K’, M, M’, M’’

• Only the first Brillouin zone (BZ) is of interest because 

everything outside can be modded back.
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HONEYCOMB LATTICE

Must account the structure of the lattice

• Possible to leave the first BZ when adding momenta

• Work with total momentum 𝑃 and relative 

momentum 𝑝 instead

𝑘, 𝑙 → 𝑃, 𝑝 

• Total momentum is conserved 

• with total momentum P construct shells of relative 

momentum in irreps of the little group (allowing for 

umklapp)

Symmetries
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K + K’ = Г
K + K = K’
K’ + K’ = K



DATA ANALYSIS

• Analysis is done at

• Total momentum Γ, K and source/sink momenta K, K’

• Lattice size - (3,3)

• 𝑈 = 3.0 and 𝑈 = 4.0

• 𝛽 =  8.0

• We are not fitting an exponent because we leverage the symmetry of the correlators

     𝑓1/2 𝑡 = σ𝑛 𝐴𝑛 𝑐𝑜𝑠ℎ 𝐸𝑛
1/2

(𝑡 −
𝛽

2
)

• Calculate the energy shift

Δ𝐸 = 𝐸2  − 2𝐸1

• Extrapolate to the continuum limit 𝑁𝑡  → ∞

• Repeat for every channel

• Repeat for all available irreducible representations (Only A1 results presented)
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K + K’ = Г
K + K = K’
K’ + K’ = K



RESULTS
One-Body Correlation Function
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The correlator is exceptionally flat!



RESULTS

Stability plot illustrating the Model Averaging

One-Body Correlation Function
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RESULTS

Stability plot illustrating the Model Averaging

One-Body Correlation Function
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RESULTS

𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 0, 𝑆𝑧 = 1 (𝑈 = 3.0)

𝐸0 = 0.093(11)

Two-Body Correlation Function
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RESULTS

𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 0, 𝑆𝑧 = 1 (𝑈 = 3.0)

Continuum Limit U=3.0 @ P=𝚪
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𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 1, 𝑆𝑧 = 1 (𝑈 = 3.0)



RESULTS
Continuum Limit U=4.0 @ P=𝚪
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𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 0, 𝑆𝑧 = 1 (𝑈 = 4.0) 𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 1, 𝑆𝑧 = 1 (𝑈 = 4.0)



RESULTS
Continuum Limit U=3.0 @ P=K
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𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 0, 𝑆𝑧 = 1 (𝑈 = 3.0) 𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 1, 𝑆𝑧 = 1 (𝑈 = 3.0)



RESULTS
Continuum Limit U=4.0 @ P=K
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𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 0, 𝑆𝑧 = 1 (𝑈 = 4.0) 𝐼 = 1, 𝑆 = 1; 𝐼𝑧 = 1, 𝑆𝑧 = 1 (𝑈 = 4.0)



SUMMARY

Page 20

Outlook

What did we find?

As expected, we found that the attractive channel has smaller energy shift than the repulsive one.

Found positive energy shift at 𝑈 = 3.0 in the channel with non-zero net charge at both total momenta.

Found positive or close to zero energy shift at 𝑈 = 3.0 in the channel with zero net charge at both total 

momenta.

Negative or close to zero energy shift at 𝑈 = 4.0 in the channel with non-zero net charge at both total 

momenta. 

Negative zero energy shift at 𝑈 = 4.0 in the channel with zero net charge at both total momenta. Possible 

bound state?
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SUMMARY

Page 20

Outlook

What does the future hold?

Generate ensembles, so we can reach the three limits simultaneously.

Add more data points to the extrapolations

Scan over 𝑈 to get Δ𝐸0(𝑈)

Perform simulations at non-zero chemical potential (𝜇 ≠ 0)

What did we find?
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