SEARCH FOR STABLE STATES IN TWO-BODY EXCITATIONS OF THE HUBBARD MODEL

on the Honeycomb Lattice

30 JULY 2024 I PETAR SINILKOV I NRW-FAIR

LATTICE 2024

Member of the Helmholtz Association

SEARCH FOR STABLE STATES IN TWO-BODY EXCITATIONS OF THE HUBBARD MODEL

on the Honeycomb Lattice

30 JULY 2024 I PETAR SINILKOV I NRW-FAIR

IN COLLABORATION WITH

EVAN BERKOWITZ(FORSCHUNGSZENTRUM JÜLICH)THOMAS LUU(FORSCHUNGSZENTRUM JÜLICH)

Member of the Helmholtz Association

EXCITON

- An exciton is a bound state of an electron and a hole
 - Bosonlike quasi-particle with a net charge zero
- Formed when the binding energy of the electronhole pair is larger than the band gap
- Good candidates for the development of topologically protected qubits, switching devices, and heat exchangers

K. Wu et al., Physical Review Applied 2 (2014) 054013 S. K. Banerjee et al., IEEE Electron Device Letters 30 (2009) 158 S. Peotta et al., Phys. Rev. B 84 (2011) 184528

EXCITON

- An exciton is a bound state of an electron and a hole
 - Bosonlike quasi-particle with a net charge zero
- Formed when the binding energy of the electronhole pair is larger than the band gap
- Good candidates for the development of topologically protected qubits, switching devices, and heat exchangers

We need non-perturbative calculations for bound states

$$H - \mu \cdot q = -\kappa \sum_{\langle xy \rangle} \left(p_x^{\dagger} p_y - h_x^{\dagger} h_y \right) + \frac{U}{2} \sum_x q_x^2 - \mu \sum_x q_x$$

- p^{\dagger} , p : creation/annihilation operators for particles
- h^{\dagger} , h : creation/annihilation operators for holes
- κ : hopping parameter
- U : on-site interaction
- $q_x = n_x^p n_x^h \equiv p_x^\dagger p_x h_x^\dagger h_x$: local charge
- μ : chemical potential

$$H - \mu \cdot q = -\kappa \sum_{\langle xy \rangle} (p_x^{\dagger} p_y - h_x^{\dagger} h_y) + \frac{U}{2} \sum_x q_x^2 - \mu \sum_x q_x$$

- p^{\dagger} , p : creation/annihilation operators for particles
- h^{\dagger} , h: creation/annihilation operators for holes
- κ : hopping parameter
- U : on-site interaction
- $q_x = n_x^p n_x^h \equiv p_x^\dagger p_x h_x^\dagger h_x$: local charge
- μ : chemical potential

Non-Interacting case

• An exact solution exists for non-interacting case at half-filling

$$E_{\vec{k}\pm} = \pm (-\kappa) \sqrt{3 + 2\left(\cos\left(\frac{3}{2}k_x + \frac{\sqrt{3}}{2}k_y\right) + \cos\left(\frac{3}{2}k_x - \frac{\sqrt{3}}{2}k_y\right) + \cos(\sqrt{3}k_y)\right)}$$

- It gives rise to a two-band structure
- We can calculate all multi-particle energies

Non-Interacting case

• An exact solution exists for non-interacting case at half-filling

$$E_{\vec{k}\pm} = \pm (-\kappa) \sqrt{3 + 2\left(\cos\left(\frac{3}{2}k_x + \frac{\sqrt{3}}{2}k_y\right) + \cos\left(\frac{3}{2}k_x - \frac{\sqrt{3}}{2}k_y\right) + \cos(\sqrt{3}k_y)\right)}$$

- It gives rise to a two-band structure
- We can calculate all multi-particle energies

More interesting when we turn on interactions

Page 6

One-body band gap

J. Ostmeyer et al., arXiv:2005.11112 J. Ostmeyer et al., Phys. Rev. B 102 (2020) 245105

One-body band gap

J. Ostmeyer et al., arXiv:2005.11112 J. Ostmeyer et al., Phys. Rev. B 102 (2020) 245105

Forschungszentrum

Member of the Helmholtz Association

30 July 2024

Page 7

Two-point correlation functions

 $C(t) = \left\langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0) \right\rangle$

• The Hubbard model can have single-electron excitations, while QCD does not have single-quark excitations

• We can construct from these one-body operators all two-body operators

Two-body correlation functions

I = 0, S = 0

I = 1, S = 0

	$S_z = 0$
$l_z = 1$ $(Q = 2)$	$\frac{1}{\sqrt{2}}(p_k^\dagger h_l - h_k p_l^\dagger)$
$I_z = 0$ $(Q = 0)$	$\frac{1}{2}(p_k^{\dagger}p_l-p_kp_l^{\dagger}+h_kh_l^{\dagger}-h_k^{\dagger}h_l)$
$l_z = -1$ $(Q = -2)$	$\frac{1}{\sqrt{2}}(p_k h_l^\dagger - h_k^\dagger p_l)$

I = 0, S = 1

	$S_z = 1$	$S_z = 0$	$S_z = -1$
$I_z = 0$ $(Q = 0)$	$rac{1}{\sqrt{2}}ig(p_k^\dagger h_l^\dagger - h_k^\dagger p_l^\daggerig)$	$\frac{1}{2}(p_kp_l^{\dagger}-p_k^{\dagger}p_l+h_kh_l^{\dagger}-h_k^{\dagger}h_l)$	$\frac{1}{\sqrt{2}}(p_kh_l-h_kp_l)$

I = 1, S = 1

	$S_z = 1$	$S_z = 0$	$S_{z} = -1$
$I_z = 1$ $(Q = 2)$	$p_k^\dagger p_l^\dagger$	$\frac{1}{\sqrt{2}}(p_k^{\dagger}h_l + h_k p_l^{\dagger})$	$h_k h_l$
$l_z = 0$ $(Q = 0)$	$\frac{1}{\sqrt{2}}(p_k^{\dagger}h_l^{\dagger}+h_k^{\dagger}p_l^{\dagger})$	$\frac{1}{2}(p_k p_l^{\dagger} + p_k^{\dagger} p_l - h_k h_l^{\dagger} - h_k^{\dagger} h_l)$	$\frac{1}{\sqrt{2}}(p_k h_l + h_k p_l)$
$l_z = -1$ $(Q = -2)$	$h_k^\dagger h_l^\dagger$	$\frac{1}{\sqrt{2}}(p_k h_l^{\dagger} + h_k^{\dagger} p_l)$	$p_k p_l$

Two-body correlation functions

I = 0, S = 0 $S_{z} = 0$ $\frac{I_{z} = 0}{(Q = 0)} = \frac{1}{2} (p_{k}p_{l}^{\dagger} + p_{k}^{\dagger}p_{l} + b_{k}h_{l}^{\dagger} + h_{k}^{\dagger}h_{l})$

 $S_z = 0$

 $\frac{1}{\sqrt{2}}(p_k^{\dagger}h_l - h_k p_l^{\dagger})$

 $\frac{1}{2}(p_k^{\dagger}p_l - p_k p_l^{\dagger} + h_k h_l^{\dagger} - h_k^{\dagger}h_l)$

 $\frac{1}{\sqrt{2}}(p_k h_l^{\dagger} - h_k^{\dagger} p_l)$

$$I = 1, S = 0$$

$$I = 0, S = 1$$

Do not measure channels with disconnected diagrams

 $I_{z} = 1$

(Q = 2)

 $I_z = 0$

(Q = 0)

 $I_{z} = -1$

(Q = -2)

Page 9

Two-body correlation functions

I = 0, S = 0

$$I = 1, S = 0$$

 $S_z = 0$

 $\frac{1}{\sqrt{2}}(p_k^{\dagger}h_l - h_k p_l^{\dagger})$

 $\frac{1}{2}(p_k^{\dagger}p_l - p_k p_l^{\dagger} + h_k h_l^{\dagger} - h_k^{\dagger}h_l)$

 $\frac{1}{\sqrt{2}}(p_k h_l^{\dagger} - h_k^{\dagger} p_l)$

Results in these channels

 $I_{z} = 1$

(Q = 2)

 $I_z = 0$

(Q = 0)

 $I_{z} = -1$

(Q = -2)

Page 9

Two-body correlation functions

I = 0, S = 1I = 0, S = 0 $S_z = 0$ $S_{z} = 1$ $S_z = 0$ $S_{z} = -1$ $I_z = 0$ (Q = 0) $I_z = 0$ $\frac{1}{\sqrt{2}} \left(p_k^{\dagger} h_l^{\dagger} - h_k^{\dagger} p_l^{\dagger} \right)$ $\frac{1}{2}(p_k p_l^{\dagger} - p_{\kappa}^{\dagger} p_l + h_k h_l^{\dagger} - h_k^{\dagger} h_l)$ $\frac{1}{\sqrt{2}}(p_k h_l - h_k p_l)$ $\frac{1}{2}(p_k p_l^{\dagger} + p_k^{\dagger} p_l + h_k h_l^{\dagger} + h_k^{\dagger} h_l)$ (Q = 0)I = 1, S = 0I = 1, S = 1 $S_{z} = 0$ $S_{z} = -1$ $S_{z} = 1$ $S_z = 0$ $I_z = 1$ $\frac{1}{\sqrt{2}}(p_k^{\dagger}h_l + h_k p_l^{\dagger})$ $\frac{1}{\sqrt{2}}(p_k^{\dagger}h_l - h_k p_l^{\dagger})$ $I_{z} = 1$ $p_k^\dagger p_l^\dagger$ $h_k h_l$ $(\hat{Q} = 2)$ $(\bar{Q} = 2)$ $I_z = 0$ $\frac{1}{\sqrt{2}}(p_k^{\dagger}h_l^{\dagger} + h_k^{\dagger}p_l^{\dagger})$ $\frac{1}{2}(p_k p_l^{\dagger} + p_k^{\dagger} p_l - h_k h_l^{\dagger} - h_k^{\dagger} h_l)$ $\frac{1}{\sqrt{2}}(p_k h_l + h_k p_l)$ $I_z = 0$ $\frac{1}{2}(p_k^{\dagger}p_l - p_kp_l^{\dagger} + h_kh_l^{\dagger} - h_k^{\dagger}h_l)$ $(\tilde{Q}=0)$ (Q = 0) $I_z = -1$
(Q = -2) $\frac{1}{\sqrt{2}}(p_k h_l^{\dagger} + h_k^{\dagger} p_l)$ $I_{z} = -1$ $\frac{1}{\sqrt{2}}(p_k h_l^{\dagger} - h_k^{\dagger} p_l)$ $h_k^{\dagger} h_l^{\dagger}$ $p_k p_l$ (Q = -2)

We expect $I_z = \pm 1$ to be repulsive while $I_z = 0$ to be attractive

HONEYCOMB LATTICE

- Bipartite lattice
 - Two triangular lattices
 - Every lattice site has a neighbor from the other sublattice
- We work in momentum space
 - Momenta modes of interest are Γ, K, K', M, M', M"
- Only the first Brillouin zone (BZ) is of interest because everything outside can be modded back.

HONEYCOMB LATTICE

Symmetries

Must account the structure of the lattice

- Possible to leave the first BZ when adding momenta
- Work with total momentum *P* and relative momentum *p* instead

 $k, l \rightarrow P, p$

- Total momentum is conserved
 - with total momentum P construct shells of relative momentum in irreps of the little group (allowing for umklapp)

DATA ANALYSIS

- Analysis is done at
 - Total momentum Γ, K and source/sink momenta K, K'
 - Lattice size (3,3)
 - *U* = 3.0 and *U* = 4.0
 - $\beta = 8.0$
- We are not fitting an exponent because we leverage the symmetry of the correlators

$$f_{1/2}(t) = \sum_n A_n \cosh\left(E_n^{1/2}(t - \frac{\beta}{2})\right)$$

• Calculate the energy shift

$$\Delta E = E^2 - 2E^1$$

- Extrapolate to the continuum limit $N_t \rightarrow \infty$
- Repeat for every channel
- Repeat for all available irreducible representations (Only A1 results presented)

 $K + K' = \Gamma$ K + K = K'K' + K' = K

One-Body Correlation Function

The correlator is exceptionally flat!

One-Body Correlation Function

Stability plot illustrating the Model Averaging

One-Body Correlation Function

Stability plot illustrating the Model Averaging

Two-Body Correlation Function

Continuum Limit U=3.0 @ P=Γ

30 July 2024

Page 16

Continuum Limit U=4.0 @ P=Γ

Continuum Limit U=3.0 @ P=K

Continuum Limit U=4.0 @ P=K

SUMMARY

Outlook

What did we find?

As expected, we found that the attractive channel has smaller energy shift than the repulsive one.

Found positive energy shift at U = 3.0 in the channel with non-zero net charge at both total momenta.

Found positive or close to zero energy shift at U = 3.0 in the channel with zero net charge at both total momenta.

Negative or close to zero energy shift at U = 4.0 in the channel with non-zero net charge at both total momenta.

Negative zero energy shift at U = 4.0 in the channel with zero net charge at both total momenta. Possible bound state?

SUMMARY

Outlook

What does the future hold?

Generate ensembles, so we can reach the three limits simultaneously.

Add more data points to the extrapolations

Scan over U to get $\Delta E_0(U)$

Perform simulations at non-zero chemical potential ($\mu \neq 0$)

REFERENCES

- K. Wu, L. Rademaker and J. Zaanen, Bilayer excitons in two-dimensional nanostructures for greatly enhanced thermoelectric efficiency, Physical Review Applied 2 (2014) 054013
- S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy and A. H. MacDonald, Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device, IEEE Electron Device Letters 30 (2009) 158
- S. Peotta et al., Josephson current in a four-terminal superconductor/exciton-condensate/superconductor system, Phys. Rev. B 84 (2011) 184528
- O. V. Gamayun, E. V. Gorbar and V. P. Gusynin, Gap generation and semimetal-insulator phase transition in graphene, Phys. Rev. B 81 (2010) 075429
- J. Choi et al., Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures, Phys. Rev. Lett. 126 (2021)
- J.-L. Wynen, E. Berkowitz, C. Koerber, T. A. Laehde and T. Luu, Avoiding ergodicity problems in lattice discretizations of the Hubbard model, Phys. Rev. B 100 (2019) 075141
- Zirnbauer, Particle-Hole Symmetries in Condensed Matter, (2020), arXiv: 2004.07107.v1
- J. Ostmeyer et al., Semimetal-Mott insulator quantum phase transition of the Hubbard model on the honeycomb lattice, Phys. Rev. B 102 (2020) 245105
- T. Luu and T. A. Lähde, Quantum Monte Carlo calculations for carbon nanotubes, Phys. Rev. B 93 (2016) 155106

