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Introduction
Introduction (I)

▶ The phase diagram of QCD in the presence of strong magnetic
fields has been actively studied during recent years, being relevant
for understanding a wide range of physical phenomena, from the
physics of the early universe to heavy-ion collision experiments

▶ Some interesting features:

• chiral symmetry breaking enhanced at zero
T, but chiral condensate decreases around Tc

(inverse magnetic catalysis)

• strengthening of the chiral transition, but
chiral restoration temperature Tc decreases as
a function of eB

• the transition is crossover at low eB, turns
first order somewhere between 4 and 9 GeV 2

JHEP 07, 173 (2015) Phys.Rev.D 105, 034511 (2022)

• curvature of the chiral transition
temperature weakly dependent on eB

Phys.Rev.D 100, 114503 (2019)
Fig. from JHEP 07, 173 (2015)
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Introduction
Introduction (II)

▶ In this work we investigate the Roberge-Weiss transition in the
phase diagram at imaginary chemical potentials

• RW line at µB/T = iπ, whose end-point
(iπ,TRW ) is believed to be a second order
critical point for physical quark masses

Phys.Rev.D 93, 074504 (2016)

• indications that TRW ∼ TChiral in the
chiral limit

Phys.Rev.D 99, 014502 (2019)

▶ Questions:

• What is the dependence of TRW on eB?

• What is the fate of the transition at strong magnetic fields?

• Is there any relation between TRW and the chiral restoration
temperature?
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Introduction
Numerical set-up

Numerical set-up:

▶ Nf = 2 + 1, stout-staggered fermions with physical masses,
tree-level Symanzik improved action

▶ Nt = 6, 8 lattices with different volumes

▶ Stay at constant chemical potential µf /T = iπ

▶ Estimate TRW from the (imaginary part of the) Polyakov loop and
its susceptibility as a function of T for different, fixed bz :

L = ⟨|Im L|⟩
χL = NtN

3
s (⟨(Im L)2⟩ − ⟨|Im L|⟩2)

At fixed Nt and bz , the temperature T is tuned by changing a. The

magnetic field is eB = 6πbz
(aNs )2

=
6πbzN

2
t

N2
s

T 2.

▶ Finite-size scaling analysis to determine the order of the transition

χL = N
γ
ν
s ϕ(tN

1
ν
s ), t = T−TRW

TRW
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Transition at finite eB
Transition at 0.2, 0.4, 0.6 GeV 2

Nt = 6 runs at eB = 0.2, 0.4, 0.6 GeV 2

▶ Ns = 18, 24 give similar results for TRW , finite-size effects are tiny

i.e. TRW (Ns = 18, eB = 0.6 GeV 2) = 180.38(69) MeV

TRW (Ns = 24, eB = 0.6 GeV 2) = 178.99(59) MeV

▶ We observe that TRW decreases as a function of eB

▶ Data fit well to a rational function TRW (eB) = T 0
RW

1+a(eB)2

1+b(eB)2
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Transition at finite eB
FSS analysis at 1 GeV 2

Nt = 6 runs at eB = 1 GeV 2

▶ Finite-size scaling analysis for Ns = 18, 24, 30, collapse plots:
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▶ Fitting the peaks of χL:

χmax(Ns) = α N
γ
ν
s → γ

ν
= 2.04(19)
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Transition at finite eB
Transition at 2.5 GeV 2

Nt = 6 runs at eB = 2.5 GeV 2

Histograms show a double peaked distribution, suggesting the presence of
metastable states typical of a first order transition.
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But we expect large discretization effects.

eB =
6πbzN

2
t

N2
s

T 2, we want bz
N2

s
≪ 1

At 1 GeV 2, bz = 30 and Ns = 24 → bz
N2
s
≈ 0.05

At 2.5 GeV 2, bz = 89 and Ns = 24 → bz
N2
s
≈ 0.15
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Towards the continuum limit
FSS analysis at 1 GeV 2

Nt = 8 runs at eB = 1 GeV 2

▶ Finite-size scaling analysis for Ns = 28, 32, 40, collapse plots:
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▶ Fitting the peaks of χL:

χmax(Ns) = α N
γ
ν
s → γ

ν
= 1.97(28)
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Towards the continuum limit
FSS analysis at 1 GeV 2

Binder cumulant:

Results are compatibile with a critical point belonging to the Z (2)
universality class, but a tricritical point cannot be ruled out.
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Towards the continuum limit
FSS analysis at 2.5 GeV 2

Nt = 8 runs at eB = 2.5 GeV 2

Histograms still show a double peaked distribution, suggesting the
presence of metastable states typical of a first order transition.
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In this case bz
N2

s
≈ 0.08.
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Towards the continuum limit
FSS analysis at 2.5 GeV 2

Nt = 8 runs at eB = 2.5 GeV 2

▶ Finite-size scaling analysis for Ns = 24, 32, 40, collapse plots:
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▶ Fitting the peaks of χL:

χmax(Ns) = α N
γ
ν
s → γ

ν
= 3.03(18)
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Curvature of the critical line
Curvature of the critical line (I)

All in all, data fit well to a rational function

TRW (eB) = T 0
RW

1+a(eB)2

1+b(eB)2 up to 1.6 GeV 2.

Full data set (including 2.5 GeV 2) well parametrized by

TRW (eB) = T 0
RW

1+a(eB)2+c(eB)4

1+b(eB)2+d(eB)4 .
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Curvature of the critical line
Curvature of the critical line (II)

We can Taylor expand the rational function ansatz around eB = 0:

TRW (eB) = T 0
RW + k(eB)2

Curvature close to the curvature of the chiral critical line at µ = 0
found by ref. JHEP 07, 173 (2015) from ⟨ψ̄lψl⟩:

k ∼ −44.8 ↔ k(eB)2 = −50.0(3.5), k(eB)4 = −56(10)
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Conclusions

To summarize:

▶ We have studied the RW end-point in the presence of background
magnetic fields

▶ The RW temperature decreases as a function of the chemical
potentials

▶ We have found indications that the transition becomes first order
between 1 and 2.5 GeV 2

▶ The curvature of the critical line is close to the curvature of the
chiral critical line (from the light quark condensate) at µ = 0
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Thank you for listening!
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