QCD constraints on isospindense matter and the nuclear equation of state

Based on 2307.15014, 2406.09273 with Ryan Abbott, Fernando Romero-López, Zohreh Davoudi, Marc Illa, Assumpta Parreño, Phiala Shanahan, Mike Wagman [NPLQCD collaboration]

Dense QCD Matter

• QCD phase diagram is an important challenge for nuclear theory: μ_B, μ_I, T

Probed in heavy-ion experiments

 Observed in supernovae, neutron star interiors, neutron star mergers

Much is unknown!

Conjectured phase diagram

- Structure conjectured by Son& Stephanov PRL 2001
- Status in 2024 [Kogut-Sinclair], [Brandt, Cuteri & Endrödi],...

Isospin chemical potential

Three approaches

1. Path integral formulation (new MC calculation for each μ_I)

$$Z(\beta, \mu_I) = \int_{\beta} [d\phi] e^{-(S[\phi] + \mu_I N_I[\phi])}$$

2. Grand canonical partition function

$$Z(\beta, \mu_I) = \sum_{s} e^{-\beta(E(s) - \mu_I I_z(s))}$$

• Low temperature limit dominated by $I=I_{\boldsymbol{z}}=n$ ground states

$$Z(\beta \to \infty, \mu_I) \sim \sum_n e^{-\beta(E_n^{(0)} - \mu_I n)}$$

3. Canonical partition function

$$Z_n(\beta) = \sum_{s} \delta_{N_s,n} e^{-\beta E(s)} \qquad \Longrightarrow \qquad \mu_I = \frac{dE}{dn} \bigg|_{V}$$

Isospin chemical potential

(Grand) canonical approach

- Need ground state energies of system as isospin charge changes
- Correlation functions with quantum numbers of many charged pions

$$C_n(t) = \left\langle \left(\sum_{x} \pi^{-}(\mathbf{x}, 0) \right)^n \prod_{i=1}^n \pi^{+}(\mathbf{y}_i, t) \right\rangle$$

Late time behaviour

$$C_n(t \to \infty) \to Ze^{-E_n^{(0)}t}$$

- Large number of Wick contractions
 - E.g. $\sim 10^{40,000}$ for n = 6144

Pion blocks

- Previous studies used:
 - Traces, Recursion relations, Vandermonde matrices & FFTs
 - Limited in n by cost (best algorithm $\sim \mathcal{O}(n^4)$) and numerical precision demands
- Made use of zero-momentum pion block ($12L^3 \times 12L^3$ matrix)

$$\Pi_{(i,\alpha)(j,\beta)}(\mathbf{x},\mathbf{y};t) = \sum_{k,\gamma,\mathbf{z}} S_{(i,\alpha)(k,\gamma)}(\mathbf{x},0;\mathbf{z},t) S_{(k,\gamma)(j,\beta)}^{\dagger}(\mathbf{y},0;\mathbf{z},t)$$

Symmetric polynomial algorithm

• New algorithm based on symmetric polynomials over eigenvalues of Π (denoted $\vec{x} = \{x_1, ... x_N\}$ with $N = 12L^3$)

$$C_n(t) = n! E_n(\vec{x})$$

where for $1 \le n \le N$

$$E_n(\vec{x}) \equiv E_n(\{x_1, \dots, x_N\}) \equiv \sum_{i_1 < \dots < i_n}^{N} x_{i_1} \dots x_{i_n}$$

Recurrence relation for

$$E_k(\{x_1,\ldots,x_M\}) = x_M E_{k-1}(\{x_1,\ldots x_{M-1}\}) + E_k(\{x_1,\ldots,x_{M-1}\}),$$

(numerically stable and cost is $\mathcal{O}(N^2)$ for all $n \in \{1,...,N\}$)

- Overall cost dominated by finding the eigenvalues: $\mathcal{O}(N^3)$
- Discussed last year see 2307.15014

Many pion correlation

Lattice QCD calculations

t/a = 18 t/a = 17 t/a = 16 t/a = 15 -68 -67 -66 -65 -64 -63 -62 -61 $\log C_{500}(t)$

t/a = 15

• Study on four ensembles of $N_f = 2 + \frac{1}{50}$ configurations with (close-to/below) \mathbf{r}

				•		,	• 05					- 1	
Label	$N_{ m conf}$	β_g	C_{SW}	am_{ud}	am_s	$(L/a)^3 \times (L_4/a)$	<i>a</i> (fm)	$M_{\pi} \; ({ m MeV}) \; L$	(fm) M_{π}	L T	(MeV)	1	
A	665	6.3	1.20537	-0.2416	-0.2050	$48^3 \times 96$	0.091(1)	166(2)	4 .37 3.7	' 5	22.8		
В	1262	6.3	1.20537	-0.2416	-0.2050	$64^{3} \times 128$	0.091(1)	-167(2)12 -	5182 - 158.0) 8–106	17.104		100
\mathbf{C}	846	6.5	1.17008	-0.2091	-0.1778	$72^{3} \times 192$	0.070(1)	166(2)	5.0lpg C 408	(3)	14.7	Nev	N IU ×103
D	246	6.5	1.17008	-0.2095	-0.1793	$96^{3} \times 192$	0.070(1)	128(2)	6.72 4.4	10	14.7	2406.	09273

• Sparsened quark propagators computed from grid of 8³ sites on

one timeslice: $N = 12 \times L^3 = 12 \times 8^3 = 6144$

• Eigenvalues computed by SVD of time sliced quark-propagator (since $\Pi = S^{\dagger}S$)

 Calculations performed in double, 2-double and 3-double

Lattice QCD calculations

- Correlation functions vary rapidly in Euclidean time
 - $C_{6144}(t)$ varies by $> 10^5$ orders of magnitude
- Correlation functions vary between samples by many orders of magnitude
 - Central Limit Theorem only valid at unachievable sample size
 - Correlation function distributions are approximately log-normal

Many pion energies

Effective energy from log-normality

$$E_{\text{eff}}^{(n)}(t) = \mu_n(t) - \mu_n(t-1) + \frac{\sigma_n^2(t)}{2} - \frac{\sigma_n^2(t-1)}{2}$$

- CLT: χ^2 -fitting makes no sense
- Bootstrap analysis takes value of $E_{\rm eff}^{(n)}$ for random timeslice in plateau region
- Entire bootstrap histogram propagated into subsequent analysis
- Energy significantly larger than that of n free pions

Many pion energies

Many pion energies

Thermodynamic observables

Observables defined as

$$\langle \mathcal{O}(E,n) \rangle_{\beta,\mu_I} = \frac{1}{Z(\beta,\mu_I)} \sum_{n} \mathcal{O}(E_n,n) e^{-\beta(E_n - \mu_I n)}$$

Pressure

$$P(\beta, \mu_I) = \int_0^{\mu_I} \frac{\langle n \rangle_{\beta, \mu}}{V} d\mu$$

Chiral interpolation & continuum extrapolation

- Action is perturbatively improved: $\mathcal{O}(a^2, g^2(a^{-1})a)$
- Masses range over $m_{\pi} \in [125,165] \text{ MeV}$
- Extrapolation/interpolation form

$$\begin{split} X^{(j)}(a,\mu_I,m_\pi) &= X_0^{(j)}(\mu_I) + X_1^{(j)}a^2 + X_2^{(j)}a^2\mu_I \\ &+ X_3^{(j)}a^2\mu_I^2 + X_4^{(j)}(m_\pi^2 - \overline{m}_\pi^2) \end{split}$$

for
$$X \in \{P, \epsilon, c_s^2, \dots\}$$

 Systematic uncertainty from model-averaging all sub-models

Superconducting gap

- Asymptotic freedom for $\mu_I \to \infty$: attractive interaction \Longrightarrow superconductivity
- Superconducting gap

$$\langle \bar{u}_a \gamma_5 d_b \rangle = \delta_{ab} \Delta$$

Solve gap equation [Fujimoto 2023]

$$\Delta(\mu_I) = b' \exp\left(-\frac{3\pi^2}{2g(\mu_I)}\right)$$

Nontrivial background

$$P(\Delta) - P(\Delta = 0) = \frac{N_c \mu_I^2}{8\pi^2} \Delta^2$$

Estimate of gap from

$$P_{\rm LQCD} - P_{\rm pQCD}^{\rm NNLO}(\Delta = 0)$$

Speed of sound

• Since temperature is $0 \sim T \le 20$ MeV, isentropic speed-of-sound can be determined

$$\frac{1}{c_s^2} = \frac{\partial \epsilon}{\partial P} = \frac{1}{\langle n \rangle_{\beta,\mu_I}} \frac{\partial}{\partial \mu_I} \langle E \rangle_{\beta,\mu_I}$$

- Exceeds conformal bound $c_s^2 \le 1/3c^2$ over wide range of μ_I
- Similar behaviour seen for small μ_I [Brandt, Cuteri, Endrodi 2022]
- Similar behaviour seen in $N_c = 2 \; \text{QCD} \; \text{[E. Itou et al]}$
- Eventually relaxes to pQCD/ideal gas

Isospin dense equation of state

- Combine information from LQCD, χ PT, pQCD
- Bayesian model mixing
 - χ PT: NLO, errors from NLO-LO
 - pQCD: NNLO with pairing gap, errors from scale variation
 - LQCD: continuum, physical mass
 - Details follow nuclear EoS methods

Isospin dense equation of state

Isospin dense equation of state

- Combine information from LQCD, χ PT, pQCD
- Bayesian model mixing

Bounding the nuclear equation of state

QCD inequalities [T Cohen 2004]

• $N_f = 2$ partition function for baryon chemical potential

$$Z_{\rm B}\left(\beta,\mu_{\rm B}\right)=\int_{\beta}[dA]{\rm det}\,\mathcal{D}\left(\frac{\mu_{\rm B}}{N_{\rm c}}\right)^2e^{-S_{\rm G}}$$
 where $\mathcal{D}(\mu)=D+m-\mu\gamma_0$

- Fermion determinant complex for $\mu_B \neq 0$
- $N_f = 2$ partition function for isospin chemical potential

$$Z_{\rm I}\left(\beta,\mu_{\rm I}\right) = \int_{\beta} \left[dA\right] \det \mathcal{D}\left(-\frac{\mu_{\rm I}}{2}\right) \det \mathcal{D}\left(\frac{\mu_{\rm I}}{2}\right) e^{-S_{\rm G}} = \int_{\beta} \left[dA\right] \left|\det \mathcal{D}\left(\frac{\mu_{\rm I}}{2}\right)\right|^2 e^{-S_{\rm G}}$$

QCD inequality

$$Z_{\rm B}\left(\beta,\mu_{\rm B}\right) \leq \int_{\beta} \left[dA\right] \left|\det \mathcal{D}\left(\frac{\mu_{\rm B}}{N_{\rm c}}\right)\right|^2 e^{-S_{\rm G}} = Z_{I}(\beta,\mu_{I} = 2\mu_{B}/N_{c})$$

• Translates to pressure bound $(PV = T \log(Z))$

$$P_B(\mu_B) \le P_I(\mu_I = 2\mu_B/N_c)$$

Saturated up to in pQCD [Moore&Gorda 2023]

Bounding the nuclear equation of state

QCD inequalities [T Cohen 2004, Fujimoto & Reddy 2023]

 Using GP-model isospin-dense EoS gives bound on symmetric nuclear matter EoS

A fascinating playground

- Complete determination of isospin-dense matter equation of state
 - LQCD+χPT+pQCD
- Clear signal for transition to pion BEC and eventually to BCS superconducting state
 - Determination of superconducting gap from difference to pQCD
- Conformal bound $c_s^2 < c^2/3$ clearly exceeded as in $N_c = 2$ QCD
- Rigorous bound on EoS of symmetric nuclear matter (but not so practical (2))

Log-normality tests and cumulants

Pressure

Details of mixture model

Models without pairing

Details of mixture model

Models without LQCD input (similar to baryon density case)

