The chiral critical point from the strong coupling expansion

Wolfgang Unger, Bielefeld University with Jangho Kim, Pratitee Pattanaik Lattice 2024, Liverpool July 31, 2024

Faculty of Physics

Dual Representation of Lattice QCD

- Use "standard" QCD lattice action (staggered fermions, Wilson gauge action)
- But: **change order of integration:**
	- gauge links $\{U_{\mu}(x)\}\$ first
	- quarks afterwards (Grassmann integration)
- At *β* = 0: link states are **mesons** and **baryons** [Rossi, Wolff, NPB 248 (1984)]
- For *β >* 0: use **strong coupling expansion**
	- O(*β*): via studied via reweighting [Langelage et al. PRL **113** (2014)],
	- for any order: has been mapped to a tensor network [Gagliardi, U, PRD 101 (2020)]
	- Sign problem in regime $\beta = \frac{6}{g^2} \lesssim 1$ **mild enough** to study full phase diagram:
		- baryons are heavy (almost static)
		- color singlets closer to physical states
			- \Rightarrow **sign reweighting** feasible: $\Delta f \simeq 10^{-5}$

2-dim. example of configuration in terms of dual variables

Strong Coupling Limit Strong Coupling Limit

Regime where sign problem is mild:

Limit of strong coupling: $\beta = \frac{6}{g^2} \rightarrow 0$

• change order of integration: $\{U_u(x)\}\$ first!

- **"dual" representation:** via color singlets on the links!
- at strong coupling: **mesons** and **baryons**

Interesting regime, because:

- **e** exhibits **chiral symmetry** breaking and confinement
- (almost) no sign problem
- fast simulations (no supercomputers necessary)

⇒ **complete phase diagram** can be calculated Caveat:

infinitely strong coupling → **coarse lattices**

Gauge corrections for *β >* 0 **needed!**

The phase diagram in the strong coupling limit

Chiral and nuclear phase boundary obtained via Monte Carlo:

- \bullet at finite quark mass, the **tri-critical point** turns into Z_2 critical end point
- o chiral and nuclear first order lines also match at finite quark mass

µ^q − T phase diagram in renormalized parameters [Kim & U. PoS Lattice 2016]

Goal: What does the Phase Diagram including *β* **look like?**

Phase Diagram in the Strong Coupling Regime and **Chiral Limit:**

Via **reweighting** in *β* from *β* = 0: O(*β*) **corrections for SU(3)**

[Langelage, de Forcrand, Philipsen & U., PRL **113** (2014)]

Questions we want to address:

- Do the **nuclear and chiral transition split?**
- Does the **tri-critical point** move to smaller or larger μ as β is increased? \bullet

Dualization of full lattice QCD

1 combined **Taylor expansion** in the reduced gauge coupling $\tilde{\beta} \equiv \frac{\beta}{2N} = \frac{1}{g^2}$ and quark mass \hat{m}_q , giving rise to **dual variables**: n_p , \bar{n}_p , d_ℓ , \bar{d}_ℓ and m_x : $\mathcal{Z}(\beta,\mu_q,\hat{m}_q) = \sum$ ${n_p, \bar{n}_p}$ $\{d_\ell, \bar{d}_\ell\,, m_x\}$ Π p $\tilde{\beta}^{\mathsf{n}_{\rho}+\bar{\mathsf{n}}_{\rho}}$ $n_p! \bar{n}_p!$ Π *ℓ* 1 $\frac{1}{d_{\ell}!\bar{d}_{\ell}!}\prod$ x $(2\hat{m}_q)^{m_x}$ $\frac{m_q}{m_x!}$ $\mathcal{G}_{n_p, \bar{n}_p, d_\ell, \bar{d}_\ell, m_x}$

■² Evaluate 1-link integrals in **^G** in terms of **generalized Weingarten functions**

 $\overline{3}$ decouple those integrals via a choice of orthogonal projectors

 $\boxed{4}$ collect operators into a **local tensor** $T_{\mathsf{x}}^{\rho_{\mathsf{x}}^{\mathsf{x}} - \rho_{\mathsf{d}}^{\mathsf{x}}}$ that depends on participating dual degrees of freedom $\mathcal{D}_x = \{m_x, d_{x,\pm\mu}, n_{x,\mu\nu}, \bar{n}_{x,\mu\nu}\}\$

■⁵ Final **dual partition function**:

$$
\mathcal{Z}(\beta,\mu_q,\hat{m}_q) = \sum_{\substack{\{n_p,\bar{n}_p\}\\{\{k_\ell,\ell_\ell,m_\chi\}}}}\sigma_f \sum_{\{\rho^{\chi}_{\pm\mu}\}\rho} \prod_{\rho=1}^{\tilde{\beta}^n p + \bar{n}_p} \prod_{\ell=(x,\mu)} \frac{e^{\mu_q \delta_{\mu,0} f_{x,\mu}}}{k_\ell!(k_\ell+|\mathbf{f}_{\ell}|)!} \prod_{x} \frac{(2\hat{m}_q)^{m_x}}{m_x!} \tau_x^{\rho^x} \sigma^{x \cdots \rho^x}(\mathcal{D}_x)
$$

[G. Gagliardi & W. U. PRD 101, (2020) 034509]

Truncation at $\mathcal{O}(\beta^2)$: allow for plaquette occupations $(n_p, \bar{n}_p) \in \{(1, 1), (2, 0), (0, 2)\}$

Monte Carlo for TN-Representation via Vertex Model

- Each tensor can be transformed into a vertex: weight depends on directions
- Number of distinct vertices:

- Some vertices have negative weight, but most configurations are positive after contraction
- Use heatbath algorithm for to modfiy vertices along closed countours; has been parallelized; Worm algorithm not yet applicable beyond O(*β*) [Pattanaik & U. PoS Lattice (2023)]
- At $\mu_B = 0$: crosschecked with HMC
- Lattice Setup: $8^3 \times 4$, $12^3 \times 4$ and $16^3 \times 4$, SC, and $\mathcal{O}(\beta)$, $\mathcal{O}(\beta^2)$ for *β* = [0*.*0*, . . . ,* 1*.*0] and at T = 0*.*8*,* 0*.*85*,* 0*.*9*,* 0*.*95*,* 1*.*0, all for chiral limit

Results: Baryon Density and Chiral Condensate Results: Baryon Density Chiral Condensate Results: Baryon Density and Chiral Condensate

All results relative to the location of the strong coupling tricritical point: $T_{N_{\tau}=4}^{TCP}=0.85, \ \mu_B_{N_{\tau}=4}^{TCP}=1.99$

Results: Baryon Susceptibility, Chiral Susceptibiltiy

All results relative to the location of the strong coupling tricritical point: $T_{N_{\tau}=4}^{TCP}=0.85, \ \mu_B_{N_{\tau}=4}^{TCP}=1.99$

Results: Average Plaquette

All results relative to the location of the strong coupling tricritical point: $T_{N_{\tau}=4}^{TCP}=0.85, \ \mu_B_{N_{\tau}=4}^{TCP}=1.99$

Average plaquette and its susceptibiltiy: no imprint of the chiral/nuclear transition

Preliminary Result on the chiral TCP/nculear CEP

 $TT^{TCP} = 0.94.12^{3} \times 4$

To compare $\mathcal{O}(\beta)$ with $\mathcal{O}(\beta^2)$: restricted to rather small lattice volume

1015 ٠ ٠ 1015 1.010 1.010 1.005 1.005 1.000 \hat{c}^{μ}_{μ} ù, ٠ 1.000 0.995 SC. from yo SC, from xa 0.995 SC, from xc 0.990 SC, from xc $O(B)$, from Y_0 $O(B)$, from x_i $O(\beta)$, from χ_c $O(\beta)$, from χ $O(B^2)$, from Y_4 from y 0.985 0.990 0.2 0.4 $^{0.8}$ 0.2 0.6 0.0 0.6 1.0 0.0 0.4 0.8 1.0

 $TT^{TCP} = 1.00.12^{3} \times 4$

- Extrapolation to thermodynamic limit requires larger volumes: expensive for $\mathcal{O}(\beta^2)$
- Does $\mu_B^{TCP}(\beta)$ move to smaller values? Not quite...

Phase Diagram in the Strong Coupling Regime *β >* 0

- Still required for $\mathcal{O}(\beta^2)$: $\mathsf{anisotropy} \: \frac{a_{\mathsf{s}}}{a_{\mathsf{t}}} \equiv \xi(\gamma,\beta)$ at finite β
- **•** Taking into account the β -dependent renormalization of aT and $a\mu_B$:

• Back-bending vanished

Even weaker (no?) *β***-dependence** after renormalization: $aT \mapsto \xi(\gamma, \beta)aT$, $a\mu_B \mapsto \xi(\gamma, \beta)a\mu_B$

Conclusions

Results:

- Dual representation established that is in principle not truncated in *β*
- Caveat: it re-introduces the sign problem gradually with *β*
- Still at O(*β* 2): TCP has weak dependence on *β* up to *β* ≲ 1
- **If TCP remains invariant for higher orders in** *β***: CEP also exists in the continuum!**

Prospects:

- **•** Character expansion with staggered fermion feasible??? SC regime up to *β* ≈ 6?
- Connect $\mathcal{O}(\beta^2)$ results to nuclear liquid gas transition at finite quark mass, low T [Kim, Pattanaik & U. PRD 107 (2023)]
- **•** Strong Coupling LQCD on a quantum annealer allows very low T [Luu, Kim & U. PRD 108 (2023)]
- **Extending the Hamiltonian formulation of LQCD to** $\beta > 0$ **and/or** $N_f = 2$ **.** well suited for quantum simulations:
	- \rightarrow Required QC Resources: [talk by Michael Fromm (Tue 16:35)]