The chiral critical point from the strong coupling expansion

Wolfgang Unger, Bielefeld University with Jangho Kim, Pratitee Pattanaik Lattice 2024, Liverpool July 31, 2024

Faculty of Physics

CRC-TR 211 Strong-interaction matter under extreme conditions

Dual Representation of Lattice QCD

- Use "standard" QCD lattice action (staggered fermions, Wilson gauge action)
- But: change order of integration:
 - gauge links $\{U_{\mu}(x)\}$ first
 - quarks afterwards (Grassmann integration)
- At $\beta = 0$: link states are mesons and baryons [Rossi, Wolff, NPB 248 (1984)]
- For $\beta > 0$: use strong coupling expansion
 - $\mathcal{O}(\beta)$: via studied via reweighting [Langelage *et al.* PRL **113** (2014)],
 - for any order: has been mapped to a tensor network [Gagliardi, U, PRD 101 (2020)]
- Sign problem in regime $\beta = \frac{6}{g^2} \lesssim 1$ mild enough to study full phase diagram:
 - baryons are heavy (almost static)
 - color singlets closer to physical states
 - \Rightarrow sign reweighting feasible: $\Delta f \simeq 10^{-5}$

2-dim. example of configuration in terms of dual variables

Strong Coupling Limit

Regime where sign problem is mild:

Limit of strong coupling: $\beta = \frac{6}{\sigma^2} \rightarrow 0$

- change order of integration: $\{U_{\mu}(x)\}$ first!
- "dual" representation: via color singlets on the links!
- at strong coupling: mesons and baryons

Interesting regime, because:

- exhibits chiral symmetry breaking and confinement
- (almost) no sign problem
- fast simulations (no supercomputers necessary)

 \Rightarrow complete phase diagram can be calculated <u>Caveat:</u>

 $\bullet \ \ \text{infinitely strong coupling} \quad \to \quad \text{coarse lattices}$

Gauge corrections for $\beta > 0$ needed!

The phase diagram in the strong coupling limit

Chiral and nuclear phase boundary obtained via Monte Carlo:

- at finite quark mass, the tri-critical point turns into Z_2 critical end point
- chiral and nuclear first order lines also match at finite quark mass

 $\mu_q - T$ phase diagram in renormalized parameters [Kim & U. PoS Lattice 2016]

Goal: What does the Phase Diagram including β look like?

Phase Diagram in the Strong Coupling Regime and Chiral Limit:

• Via reweighting in β from $\beta = 0$: $\mathcal{O}(\beta)$ corrections for SU(3)

[Langelage, de Forcrand, Philipsen & U., PRL 113 (2014)]

Questions we want to address:

- Do the nuclear and chiral transition split?
- Does the tri-critical point move to smaller or larger μ as β is increased?

Dualization of full lattice QCD

1

2

3

4

5

combined **Taylor expansion** in the reduced gauge coupling $\tilde{\beta} \equiv \frac{\beta}{2N} = \frac{1}{g^2}$ and quark mass \hat{m}_q , giving rise to **dual variables**: n_p , \bar{n}_p , d_ℓ , \bar{d}_ℓ and m_x : $\mathcal{Z}(\beta, \mu_q, \hat{m}_q) = \sum_{\substack{\{n_p, \bar{n}_p\}\\\{d_\ell, \bar{d}_\ell, m_x\}}} \prod_p \frac{\tilde{\beta}^{n_p + \bar{n}_p}}{n_p! \bar{n}_p!} \prod_\ell \frac{1}{d_\ell! \bar{d}_\ell!} \prod_x \frac{(2\hat{m}_q)^{m_x}}{m_x!} \mathcal{G}_{n_p, \bar{n}_p, d_\ell, \bar{d}_\ell, m_x}$

Evaluate 1-link integrals in ${\cal G}$ in terms of generalized Weingarten functions

decouple those integrals via a choice of orthogonal projectors

collect operators into a local tensor $T_x^{\rho_{-d}^x \cdots \rho_d^x}$ that depends on participating dual degrees of freedom $\mathcal{D}_x = \{m_x, d_{x,\pm\mu}, n_{x,\mu\nu}, \bar{n}_{x,\mu\nu}\}$

Final dual partition function:

$$\mathcal{Z}(\beta,\mu_{q},\hat{m}_{q}) = \sum_{\substack{\{n_{p},\bar{n}_{p}\}\\\{k_{\ell},f_{\ell},m_{x}\}}} \sigma_{f} \sum_{\substack{\{\rho^{x} \pm \mu\} \ \rho}} \prod_{p} \frac{\tilde{\beta}^{n_{p}+\bar{n}_{p}}}{n_{p}!\bar{n}_{p}!} \prod_{\ell=(x,\mu)} \frac{e^{\mu_{q}\delta_{\mu,0}f_{x,\mu}}}{k_{\ell}!(k_{\ell}+|f_{\ell}|)!} \prod_{x} \frac{(2\hat{m}_{q})^{m_{x}}}{m_{x}!} T_{x}^{\rho^{x}} - \cdots, \rho^{x}_{d}(\mathcal{D}_{x})$$

[G. Gagliardi & W. U. PRD 101, (2020) 034509]

Truncation at $\mathcal{O}(\beta^2)$: allow for plaquette occupations $(n_p, \bar{n}_p) \in \{(1, 1), (2, 0), (0, 2)\}$

Monte Carlo for TN-Representation via Vertex Model

- Each tensor can be transformed into a vertex: weight depends on directions
- Number of distinct vertices:

limit	$\mathcal{O}(eta^0)$	$\mathcal{O}(\beta^1)$	$\mathcal{O}(\beta^2)$	$\mathcal{O}(eta^3)$
all	221	3485	51125	681013
chiral	176	2960	44672	607792
quenched	1	1	25	137

- Some vertices have negative weight, but most configurations are positive after contraction
- Use heatbath algorithm for to modify vertices along closed countours; has been parallelized; Worm algorithm not yet applicable beyond O(β)
 [Pattanaik & U. PoS Lattice (2023)]
- At $\mu_B = 0$: crosschecked with HMC
- Lattice Setup: $8^3 \times 4$, $12^3 \times 4$ and $16^3 \times 4$, SC, and $\mathcal{O}(\beta)$, $\mathcal{O}(\beta^2)$ for $\beta = [0.0, \dots, 1.0]$ and at T = 0.8, 0.85, 0.9, 0.95, 1.0, all for chiral limit

Results: Baryon Density and Chiral Condensate

• All results relative to the location of the strong coupling tricritical point: $T_{N_{\tau}=4}^{TCP} = 0.85, \ \mu_{B}_{N_{\tau}=4}^{TCP} = 1.99$

Results: Baryon Susceptibility, Chiral Susceptibility

• All results relative to the location of the strong coupling tricritical point: $T_{N_{\tau}=4}^{TCP} = 0.85, \ \mu_{B_{N_{\tau}=4}}^{TCP} = 1.99$

Results: Average Plaquette

• All results relative to the location of the strong coupling tricritical point: $T_{N_{\tau}=4}^{TCP} = 0.85, \ \mu_{B_{N_{\tau}=4}}^{TCP} = 1.99$

Average plaquette and its susceptibility: no imprint of the chiral/nuclear transition

Preliminary Result on the chiral TCP/nculear CEP

To compare O(β) with O(β²): restricted to rather small lattice volume

- Extrapolation to thermodynamic limit requires larger volumes: expensive for $\mathcal{O}(\beta^2)$
- Does $\mu_B^{TCP}(\beta)$ move to smaller values? Not quite...

Phase Diagram in the Strong Coupling Regime $\beta > 0$

- Still required for $\mathcal{O}(\beta^2)$: anisotropy $\frac{a_s}{a_t} \equiv \xi(\gamma, \beta)$ at finite β
- Taking into account the β -dependent renormalization of aT and $a\mu_B$:

- Back-bending vanished
- Even weaker (no?) β -dependence after renormalization: $aT \mapsto \xi(\gamma, \beta)aT$, $a\mu_B \mapsto \xi(\gamma, \beta)a\mu_B$

Conclusions

Results:

- $\bullet\,$ Dual representation established that is in principle not truncated in $\beta\,$
- $\bullet\,$ Caveat: it re-introduces the sign problem gradually with $\beta\,$
- Still at $\mathcal{O}(\beta^2)$: TCP has weak dependence on β up to $\beta \lesssim 1$
- If TCP remains invariant for higher orders in β : CEP also exists in the continuum!

Prospects:

- Character expansion with staggered fermion feasible??? SC regime up to $\beta \simeq 6$?
- Connect $\mathcal{O}(\beta^2)$ results to nuclear liquid gas transition at finite quark mass, low T [Kim, Pattanaik & U. PRD 107 (2023)]
- Strong Coupling LQCD on a quantum annealer allows very low T [Luu, Kim & U. PRD 108 (2023)]
- Extending the Hamiltonian formulation of LQCD to $\beta > 0$ and/or $N_{\rm f} = 2$, well suited for quantum simulations:
 - \rightarrow Required QC Resources: [talk by Michael Fromm (Tue 16:35)]