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Dual Representation of Lattice QCDDual Representation of Lattice QCDDual Representation of Lattice QCDDual Representation of Lattice QCDDual Representation of Lattice QCD
Use “standard” QCD lattice action (staggered
fermions, Wilson gauge action)
But: change order of integration:

gauge links {Uµ(x)} first
quarks afterwards (Grassmann integration)

At β = 0: link states are mesons and baryons
[Rossi, Wolff, NPB 248 (1984)]

For β > 0: use strong coupling expansion
O(β): via studied via reweighting

[Langelage et al. PRL 113 (2014)],
for any order: has been mapped to a tensor
network [Gagliardi, U, PRD 101 (2020)]
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2-dim. example of configuration
in terms of dual variables

Sign problem in regime β = 6
g2 ≲ 1

mild enough to study full phase diagram:
baryons are heavy (almost static)
color singlets closer to physical states
⇒ sign reweighting feasible: ∆f ≃ 10−5
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Strong Coupling LimitStrong Coupling LimitStrong Coupling LimitStrong Coupling LimitStrong Coupling Limit
Regime where sign problem is mild:

Limit of strong coupling: β = 6
g2 → 0

x

U μ (x)U +
( x−μ̂)

U μ (x)

U ν (x+μ̂)

U μ
+
( x+ν̂)

U ν
+
( x)

+  β

D F μν
a F μν

a

+  mq

ψ(x+μ)

ψ̄( x )ψ( x)

ψ̄(x−μ) ψ( x ) ψ̄( x )
 

det [D ] tr [U P ]→  M [ ψ̄ ,ψ] , B [ ψ ,ψ ,ψ]

change order of integration: {Uµ(x)} first!
“dual” representation: via color singlets on the links!
at strong coupling: mesons and baryons

Interesting regime, because:
exhibits chiral symmetry breaking and confinement
(almost) no sign problem
fast simulations (no supercomputers necessary)

⇒ complete phase diagram can be calculated

a(β)

β  →  ∞

lattice spacing
(non-perturbative, e.g. fromT c , MB ,<ψ̄ψ>)

β  →  ∞β=0
Caveat:

infinitely strong coupling → coarse lattices

Gauge corrections for β > 0 needed!
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The phase diagram in the strong coupling limitThe phase diagram in the strong coupling limitThe phase diagram in the strong coupling limitThe phase diagram in the strong coupling limitThe phase diagram in the strong coupling limit

Chiral and nuclear phase boundary obtained via Monte Carlo:
at finite quark mass, the tri-critical point turns into Z2 critical end point
chiral and nuclear first order lines also match at finite quark mass
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Chiral Transition
Nuclear Transition

µB/T=3

µq − T phase diagram in renormalized parameters [Kim & U. PoS Lattice 2016]
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Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?
Phase Diagram in the Strong Coupling Regime and Chiral Limit:

Via reweighting in β from β = 0: O(β) corrections for SU(3)
[Langelage, de Forcrand, Philipsen & U., PRL 113 (2014)]
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Questions we want to address:
Do the nuclear and chiral transition split?
Does the tri-critical point move to smaller or larger µ as β is increased?
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Dualization of full lattice QCDDualization of full lattice QCDDualization of full lattice QCDDualization of full lattice QCDDualization of full lattice QCD

■■1 combined Taylor expansion in the reduced gauge coupling β̃ ≡ β
2N = 1

g2 and
quark mass m̂q, giving rise to dual variables:
np, n̄p, dℓ, d̄ℓ and mx :

Z(β, µq, m̂q) =
∑

{np ,n̄p}
{dℓ,d̄ℓ,mx }

∏
p

β̃np+n̄p

np!n̄p!
∏

ℓ

1
dℓ!d̄ℓ!

∏
x

(2m̂q)mx

mx ! Gnp ,n̄p ,dℓ,d̄ℓ,mx

■■2 Evaluate 1-link integrals in G in terms of generalized Weingarten functions

■■3 decouple those integrals via a choice of orthogonal projectors

■■4 collect operators into a local tensor T
ρx

−d ···ρx
d

x that depends on participating dual
degrees of freedom Dx = {mx , dx,±µ, nx,µν , n̄x,µν}

■■5 Final dual partition function:
Z(β, µq, m̂q) =

∑
{np ,n̄p }

{kℓ,fℓ,mx }

σf

∑
{ρx

±µ
}

∏
p

β̃np +n̄p

np !n̄p !

∏
ℓ=(x,µ)

eµqδµ,0 fx,µ

kℓ!(kℓ + |fℓ|)!

∏
x

(2m̂q)mx

mx !
T

ρx
−d ,...,ρx

d
x (Dx )

[G. Gagliardi & W. U. PRD 101, (2020) 034509]

Truncation at O(β2): allow for plaquette occupations (np, n̄p) ∈ {(1, 1), (2, 0), (0, 2)}
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Monte Carlo for TN-Representation via Vertex ModelMonte Carlo for TN-Representation via Vertex ModelMonte Carlo for TN-Representation via Vertex ModelMonte Carlo for TN-Representation via Vertex ModelMonte Carlo for TN-Representation via Vertex Model

Each tensor can be transformed into a vertex:
weight depends on directions
Number of distinct vertices:

limit O(β0) O(β1) O(β2) O(β3)
all 221 3485 51125 681013
chiral 176 2960 44672 607792
quenched 1 1 25 137

Some vertices have negative weight,
but most configurations are positive
after contraction
Use heatbath algorithm for to modfiy
vertices along closed countours; has
been parallelized; Worm algorithm not
yet applicable beyond O(β)
[Pattanaik & U. PoS Lattice (2023)]

At µB = 0: crosschecked with HMC
Lattice Setup: 83x4, 123x4 and 163 × 4, SC, and O(β), O(β2) for
β = [0.0, . . . , 1.0] and at T = 0.8, 0.85, 0.9, 0.95, 1.0, all for chiral limit
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Results: Baryon Density and Chiral CondensateResults: Baryon Density and Chiral CondensateResults: Baryon Density and Chiral CondensateResults: Baryon Density and Chiral CondensateResults: Baryon Density and Chiral Condensate

All results relative to the location of the strong coupling tricritical point:
T TCP

Nτ =4 = 0.85, µB
TCP
Nτ =4 = 1.99
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Results: Baryon Susceptibility, Chiral SusceptibiltiyResults: Baryon Susceptibility, Chiral SusceptibiltiyResults: Baryon Susceptibility, Chiral SusceptibiltiyResults: Baryon Susceptibility, Chiral SusceptibiltiyResults: Baryon Susceptibility, Chiral Susceptibiltiy

All results relative to the location of the strong coupling tricritical point:
T TCP

Nτ =4 = 0.85, µB
TCP
Nτ =4 = 1.99
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Results: Average PlaquetteResults: Average PlaquetteResults: Average PlaquetteResults: Average PlaquetteResults: Average Plaquette

All results relative to the location of the strong coupling tricritical point:
T TCP

Nτ =4 = 0.85, µB
TCP
Nτ =4 = 1.99

Average plaquette and its susceptibiltiy: no imprint of the chiral/nuclear
transition
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Preliminary Result on the chiral TCP/nculear CEPPreliminary Result on the chiral TCP/nculear CEPPreliminary Result on the chiral TCP/nculear CEPPreliminary Result on the chiral TCP/nculear CEPPreliminary Result on the chiral TCP/nculear CEP

To compare O(β) with O(β2): restricted to rather small lattice volume

Extrapolation to thermodynamic limit requires larger volumes:
expensive for O(β2)
Does µTCP

B (β) move to smaller values? Not quite...
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Phase Diagram in the Strong Coupling Regime β > 0Phase Diagram in the Strong Coupling Regime β > 0Phase Diagram in the Strong Coupling Regime β > 0Phase Diagram in the Strong Coupling Regime β > 0Phase Diagram in the Strong Coupling Regime β > 0

Still required for O(β2): anisotropy as
at

≡ ξ(γ, β) at finite β

Taking into account the β-dependent renormalization of aT and aµB :

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

chiral 1
st

 and 2
nd

 order transition

aTMF

aµB,MF

1
st

 order β=0
β=0

β=0.3
β=0.6
β=0.9

TCP at β=0
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

chiral 1
st

 and 2
nd

 order transition

aTNP

aµB,NP

1
st

 order β=0
β=0

β=0.3
β=0.6
β=0.9

TCP at β=0
 

Back-bending vanished
Even weaker (no?) β-dependence after renormalization:
aT 7→ ξ(γ, β)aT , aµB 7→ ξ(γ, β)aµB
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ConclusionsConclusionsConclusionsConclusionsConclusions

Results:
Dual representation established that is in principle not truncated in β

Caveat: it re-introduces the sign problem gradually with β

Still at O(β2): TCP has weak dependence on β up to β ≲ 1
If TCP remains invariant for higher orders in β: CEP also exists in the continuum!

Prospects:
Character expansion with staggered fermion feasible??? SC regime up to β ≃ 6?
Connect O(β2) results to nuclear liquid gas transition at finite quark mass, low T
[Kim, Pattanaik & U. PRD 107 (2023)]

Strong Coupling LQCD on a quantum annealer allows very low T
[Luu, Kim & U. PRD 108 (2023)]

Extending the Hamiltonian formulation of LQCD to β > 0 and/or Nf = 2,
well suited for quantum simulations:
→ Required QC Resources: [talk by Michael Fromm (Tue 16:35) ]
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