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Outline

• Aim: Compute the partition function of LQCD (and resulting observables) in order to
study the phase diagram of QCD.

• Current Restrictions:
▶ Two dimensions (one time and one spatial dimension)
▶ One quark flavor on the lattice using staggered fermions.
▶ Expand gauge action in orders of the coupling-parameter β.

• Usual Monte-Carlo-Method does not work. (sign problem for µ ̸= 0)
• Method: Tensor-Network: Grassmann higher order tensor renormalization group

approach (Grassmann HOTRG)
• Previous work: Infinite coupling (No gauge action) up to four dimensions1

1Bloch and Lohmayer, Grassmann higher-order tensor renormalization group approach for two-dimensional strong-coupling QCD (2022)
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Tensor-Network approach in two dimensions

Z =
∑

{j(x,ν)}

V∏
x

Tjx,−1,jx,1,jx,−2,jx,2

▶ Every site has the same tensor on it.
▶ Every link (x , ν) on the lattice has an index

jx ,ν . (Range D0 depends on theory.)
▶ Adjacent tensors are connected via contraction,

i.e. summation over link index jx ,ν .

▶ Contracting two adjacent tensors leads to a new coarse grid tensor with increased size.
▶ HOTRG: Iterative truncation scheme which reduces the range of a "fat index" from

D2
0 to D based on SVD of unfoldings.2

2De Lathauwer et al., A multilinear singular value decomposition (2000)
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LQCD partition function

ZQCD =
∫ [∏

x
dψxdψ̄x

] [∏
x ,ν

dUx ,ν

] [∏
x ,ν

eSf
x,ν eSb

x,ν

]  µ̸=ν∏
x ,µ,ν

eSG
x,µ,ν

 eSM

Staggered fermions

S f
x ,ν = ηx ,νψ̄xeµδν,1Ux ,νψx+ν̂ Sb

x ,ν = −ηx ,νψ̄x+ν̂e−µδν,1U†
x ,νψx ,

with chemical potential µ and usual staggered phases ηx ,ν

Wilson action

SG
x ,µ,ν = β

2Nc
tr

[
Ux ,µUx+µ̂,νU†

x+ν̂,µU†
x ,ν

]
, SM = 2m

∑
x
ψ̄xψx ,

with coupling parameter β and quark mass m

▶ Make Taylor-expansions for all exponentials.→ Summation indices will be TN-indices.
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Result of gauge integral3,4

▶ Only non-zero result when a−p
Nc

≡ q ∈ Z, without loss of generality a > p

∫
SU(Nc)

DUUi1j1 · · · UiajaU
†
k1l1 · · · U†

kp lp ∝
∑

(α,β)

∑
π,σ∈Sp

ε⊗q
i{α}

δlπ
i{β}

W̃gq,p
Nc (π ◦ σ−1)ε⊗q,j{α}δ

j{β}
kσ

→ W̃g are so-called generalized Weingarten functions.

Grassmann integration
▶ Grassmanns can not be integrated directly without producing non-local signs.

→ Introduce Grassmann-Network5

Color indices can be contracted locally and therefore are no d.o.f. of the TN!
3Gagliardi and Unger, A new dual representation for staggered lattice QCD (2020)
4Borisenko, Voloshyn and Chelnokov, SU(N) polynomial integrals and some applications (2020)
5Shimizu and Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model (2014)
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Separation of different orders in β

1+
+

1+
+

1+
+

1+
+

▶ So far: Expansion up to order nmax for every plaquette.
▶ Approach includes many terms of higher order than

nmax that spoil applicable range in β.
▶ Fit of coefficients produces large errors.

→ We developed a modified GHOTRG procedure, where
terms of higher order than nmax are deleted in each step.

Translation invariance
▶ Many configurations differ only in the choice of the origin.
▶ Consider only one of those configurations and introduce combinatorial factor.
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Results: Expansion of particle density
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n(β, µ) ≡ 1
V

∂ log Z(β,µ)
∂µ ≈

nmax∑
i=0

ni(µ)βi

▶ Define fit-ansatz, motivated by
Fermi-Dirac statistics:

n(β, µ) = 3
2

(
1+tanh[an(β)(µ−µc

n(β))]
)

▶ Expand this function in β, using

an(β) ≈
nmax∑
i=0

an,iβ
i

µc
n(β) ≈

nmax∑
i=0

µc
n,iβ

i

▶ Fit the data with resulting
functions.
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Results: Particle density
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Results: Chiral condensate
Equivalent approach with fit-ansatz ⟨ψ̄ψ⟩(µ) = bcc(β)

(
1 − tanh[acc(β)(µ− µc

cc(β))]
)
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Results: critical chemical potential
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Outlook

▶ Apply this method in 4 dimensions.
▶ Add a second fermion flavor.


