

Taylor series coefficients at $\mu=0$ from imaginary μ computations

Marco Aliberti^{*1,2}, Francesco Di Renzo1,2

August 2, 2024

*Speaker

 1 Università degli Studi di Parma

2 INFN - Sezione di Milano Bicocca Gruppo Collegato di Parma

The Sign Problem

- The study of the phase diagram requires finite baryon number density
- Finite density lattice simulations ⇒ chemical potential $\mu \neq 0$
- Generic $\mu \Rightarrow$ complex Dirac determinant, leads to sign problem
- For purely imaginary values of μ the Dirac determinant remains real
- Methods to extrapolate physical functions of real μ from the imaginary axis are needed

2/10 M. Aliberti & F. Di Renzo

DI PARMA

DI PARMA

Taylor Expansion of a Generic Function

Dataset

 $\{f(x_0), \ldots, f(x_{N-1})\}$

N

$$
\left\{\left|\frac{f(x_0)}{f(x_0)}\right| = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0)x_0^k + O(x^N)\right|
$$
 N Linear Equations!

$$
f(x_{N-1}) = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0) x_{N-1}^{k} + O(x^{N})
$$

Taylor Expansion of a Generic Function

Dataset

 Γ

 $\overline{\mathcal{L}}$

 $\{f(x_0), \ldots, f(x_{N-1})\}$

. . .

$$
f(x_0) = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0) x_0^k + O(x^N)
$$

N Linear Equations!

$$
f(x_{N-1}) = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0) x_{N-1}^{k} + O(x^{N})
$$

N Unknown Parameters

 $f^{(k)}(0)$ or $\frac{1}{k!}f^{(k)}(0)$, $k = 0, ..., N-1$

Generic Function and its First Derivative

Dataset

 $\sqrt{ }$

 $\overline{\mathcal{L}}$

$$
\{f(x_0),\ldots,f(x_{N-1})\},\quad \{f'(x_N),\ldots,f'(x_{N+M-1})\}
$$

$$
f(x_i) = \sum_{k=0}^{N+M-1} \frac{1}{k!} f^{(k)}(0) x_i^k + O(x^{N+M}) + i = 0, ..., N-1
$$

 $\mathbf{p}=\frac{1}{2}$, $\frac{1}{2}$,

$$
\sqrt{f'(x_j)} = \sum_{k=1}^{N+M-1} \frac{k'}{k!} f^{(k)}(0) x_j^{k-1} + O(x^{N+M-1}) \qquad j = N, \ldots, N+M-1
$$

Generic Function and its First Derivative

Dataset

 $\sqrt{ }$

 $\overline{\mathcal{L}}$

$$
\{f(x_0),\ldots,f(x_{N-1})\},\quad \{f'(x_N),\ldots,f'(x_{N+M-1})\}
$$

$$
f(x_i) = \sum_{k=0}^{N+M-1} \frac{1}{k!} f^{(k)}(0) x_i^k + O(x^{N+M}) + i = 0, ..., N-1
$$

 $\mathbf{p}=\frac{1}{2}$, $\frac{1}{2}$,

$$
\sqrt{f'(x_j)} = \sum_{k=1}^{N+M-1} \frac{k'}{k!} f^{(k)}(0) x_j^{k-1} + O(x^{N+M-1}) \qquad j = N, \ldots, N+M-1
$$

 $N + M$ Unknown Parameters

 $f^{(k)}(0)$ or $\frac{1}{k!}f^{(k)}(0)$, $k = 0, \ldots, N + M - 1$

Odd Function and its First Derivative

Dataset

$$
\{f(x_0),\ldots,f(x_{N-1})\},\quad \{f'(x_N),\ldots,f'(x_{N+M-1})\},\quad f(-x)=-f(x)
$$

 f (xi) ≈ N+ X M−1 k=0 1 (2^k + 1)!^f (2k+1)(0)x 2k+1 i . . . N + M Linear Equations! i = 0, . . . , N − 1

$$
\left\{\frac{N+M-1}{f'(x_j)}\approx \sum_{k=0}^{N+M-1}\frac{2k+1}{(2k+1)!}f^{(2k+1)}(0)x_j^{2k}\right\}\qquad j=N,\ldots,N+M-1
$$

Odd Function and its First Derivative

Dataset

$$
\{f(x_0),\ldots,f(x_{N-1})\},\quad \{f'(x_N),\ldots,f'(x_{N+M-1})\},\quad f(-x)=-f(x)
$$

$$
\left\{\n\begin{array}{l}\n\left\{\n\begin{array}{l}\n\frac{N+M-1}{k=0}\n\end{array}\n\right\}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{N+M-1}{k=0}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\n\begin{array}{l}\n\frac{2k+1}{k}\n\end{array}\n\right\}\n\left\{\
$$

 $N + M$ Unknown Parameters

 $f^{(2k+1)}(0)$ or $\frac{1}{(2k+1)!} f^{(2k+1)}(0)$, $\quad f^{(2k)}(0) = 0$, $\quad k = 0, \ldots, N + M - 1$

[Taylor coeffs from imaginary](#page-0-0) μ The Method

The Linear System (1)

[Taylor coeffs from imaginary](#page-0-0) μ The Method

The Linear System (1)

▶ Pro: More accurate results ▶ Con: Worse condition number

Condition Number

 $\mathsf{Cond}(A)=\frac{|\lambda_{\mathsf{max}}(A)|}{|\lambda_{\mathsf{min}}(A)|},$ $\lambda_{\min/\max}(A) = \min/\max$ eigenvalue of A

6/10 M. Aliberti & F. Di Renzo

[Taylor coeffs from imaginary](#page-0-0) μ The Method

[/]

The Linear System (2)

Condition Number

▶ Pro: Better condition number ▶ Con: Less accurate results

 $\mathsf{Cond}(A)=\frac{|\lambda_{\mathsf{max}}(A)|}{|\lambda_{\mathsf{min}}(A)|}$, $\lambda_{\min/\max}(A) = \min/\max$ eigenvalue of A

Y

P

 $f(x_0)$ $f(x_1)$. . . $f(x_{N-2})$ $\frac{f(x_1)}{f(x_1-2)}$
 $f(x_{N-1})$

 $\begin{matrix} \downarrow \ \downarrow \end{matrix}$

 \Rightarrow

7/10 M. Aliberti & F. Di Renzo

Toy Model: sin(x)

4 equally spaced input points in range (0, 0.5i]

Toy Model: sin(x)

4 equally spaced input points in range (0, 0.5i]

With LatticeQCD data¹

Objective:

the barion number density $\chi_1(\mu)$ at $\mu=0$

The first two nontrivial derivatives of

Input data:

 $\mu \in \{+0.3928i,+0.7853i,+1.178i,+1.5709i\}$

Baryon number density for

¹From the Bielefeld-Parma collaboration

In Conclusion...

Discrepancy between HotQCD data and Bielefeld-Parma data is less than the error obtained through statistical bootstrap

▶ Lower order derivatives more stable than higher order derivatives

In the future:

 \blacktriangleright Thorough study of statistical errrors

Comparison with another method of analytic continuation²

²See talk by F. Di Renzo

