

Taylor series coefficients at $\mu = 0$ fromimaginary μ computations

Marco Aliberti^{*1,2}, Francesco Di Renzo^{1,2}

August 2, 2024

*Speaker

¹Università degli Studi di Parma

²INFN - Sezione di Milano Bicocca Gruppo Collegato di Parma

The Sign Problem

- The study of the phase diagram requires finite baryon number density
 - Finite density lattice simulations \Rightarrow chemical potential $\mu \neq 0$
 - Generic $\mu \Rightarrow$ complex Dirac determinant, leads to sign problem
- For purely imaginary values of µ the Dirac determinant remains real
- Methods to extrapolate physical functions of real µ from the imaginary axis are needed

DI PARMA

DI PARMA

Taylor Expansion of a Generic Function

Dataset

 $\{f(x_0), \ldots, f(x_{N-1})\}$

$$f(x_0) = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0) x_0^k + O(x^N)$$

$$\vdots$$

$$f(x_{N-1}) = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0) x_{N-1}^k + O(x^N)$$

Taylor Expansion of a Generic Function

Dataset

 $\{f(x_0), \ldots, f(x_{N-1})\}$

$$f(x_0) = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0) x_0^k + O(x^N)$$

$$N \text{ Linear Equations!}$$

$$f(x_{N-1}) = \sum_{k=0}^{N-1} \frac{1}{k!} f^{(k)}(0) x_{N-1}^k + O(x^N)$$

N Unknown Parameters

 $f^{(k)}(0)$ or $\frac{1}{k!}f^{(k)}(0)$, $k = 0, \dots, N-1$

Generic Function and its First Derivative

Dataset

$$\{f(x_0),\ldots,f(x_{N-1})\}, \{f'(x_N),\ldots,f'(x_{N+M-1})\}$$

$$f(x_i) = \sum_{k=0}^{N+M-1} \frac{1}{k!} f^{(k)}(0) x_i^k + O(x^{N+M}) \qquad i = 0, \dots, N-1$$

N + M Linear Equations!

$$f'(x_j) = \sum_{k=1}^{N+M-1} \frac{k}{k!} f^{(k)}(0) x_j^{k-1} + O(x^{N+M-1}) \qquad j = N, \dots, N+M-1$$

Generic Function and its First Derivative

Dataset

$$\{f(x_0),\ldots,f(x_{N-1})\}, \{f'(x_N),\ldots,f'(x_{N+M-1})\}$$

$$f(x_i) = \sum_{k=0}^{N+M-1} \frac{1}{k!} f^{(k)}(0) x_i^k + O(x^{N+M}) \qquad i = 0, \dots, N-1$$

N + M Linear Equations!

$$f'(x_j) = \sum_{k=1}^{N+M-1} \frac{k}{k!} f^{(k)}(0) x_j^{k-1} + O(x^{N+M-1}) \qquad j = N, \dots, N+M-1$$

N + M Unknown Parameters

 $f^{(k)}(0) \text{ or } \frac{1}{k!} f^{(k)}(0), \quad k = 0, \dots, N + M - 1$

Odd Function and its First Derivative

Dataset

$$\{f(x_0),\ldots,f(x_{N-1})\}, \{f'(x_N),\ldots,f'(x_{N+M-1})\}, f(-x) = -f(x)$$

$$\begin{cases} f(x_i) \approx \sum_{k=0}^{N+M-1} \frac{1}{(2k+1)!} f^{(2k+1)}(0) x_i^{2k+1} & i = 0, \dots, N-1 \\ \vdots & N+M \text{ Linear Equations!} \\ f'(x_j) \approx \sum_{k=0}^{N+M-1} \frac{2k+1}{(2k+1)!} f^{(2k+1)}(0) x_j^{2k} & j = N, \dots, N+M-1 \end{cases}$$

Odd Function and its First Derivative

Dataset

$$\{f(x_0),\ldots,f(x_{N-1})\}, \{f'(x_N),\ldots,f'(x_{N+M-1})\}, f(-x) = -f(x)$$

$$\begin{cases} f(x_i) \approx \sum_{k=0}^{N+M-1} \frac{1}{(2k+1)!} f^{(2k+1)}(0) x_i^{2k+1} & i = 0, \dots, N-1 \\ \vdots & N+M \text{ Linear Equations!} \\ f'(x_j) \approx \sum_{k=0}^{N+M-1} \frac{2k+1}{(2k+1)!} f^{(2k+1)}(0) x_j^{2k} & j = N, \dots, N+M-1 \end{cases}$$

N + M Unknown Parameters

 $f^{(2k+1)}(0)$ or $\frac{1}{(2k+1)!}f^{(2k+1)}(0)$, $f^{(2k)}(0) = 0$, $k = 0, \dots, N + M - 1$

Taylor coeffs from imaginary μ

The Linear System (1)

Taylor coeffs from imaginary μ

The Linear System (1)

Pro: More accurate results
 Con: Worse condition number

Condition Number

 $\begin{array}{l} \mathsf{Cond}(A) = \frac{|\lambda_{\max}(A)|}{|\lambda_{\min}(A)|}, \\ \lambda_{\min/\max}(A) = \min/\max \text{ eigenvalue of } A \end{array}$

M. Aliberti & F. Di Renzo

Taylor coeffs from imaginary μ

The Linear System (2)

Pro: Better condition number Con: Less accurate results

 $\operatorname{Cond}(A) = \frac{|\lambda_{\max}(A)|}{|\lambda_{\min}(A)|}$, $\lambda_{\min/\max}(A) = \min/\max$ eigenvalue of A

M. Aliberti & F. Di Renzo

Toy Model: sin(x)

4 equally spaced input points in range (0, 0.5i]

	Points Only	Points and Parity
f ^(k) (0)	$(0) - 9.519e^{-21} - 6.183e^{-05}i$	1) + 1.000 e^{+00} + 1.205 $e^{-15}i$
	1) + 1.001 e^{+00} + 0.000 $e^{+00}i$	$(3) - 1.000e^{+00} + 1.972e^{-13}i$
	2) + 9.660 e^{-17} + 9.878 $e^{-03}i$	5) + 1.000 e^{+00} + 2.959 $e^{-11}i$
	$(3) - 1.051e^{+00} + 3.075e^{-16}i$	$(-7) - 1.007e^{+00} + 2.716e^{-09}i$
	Condition n.: $5.044e^{+03}$	Condition n.: 2.975 <i>e</i> ⁺⁰⁷
	$0) - 1.294e^{-16} - 6.183e^{-05}i$	$1) + 1.000e^{+00} + 1.150e^{-15}i$
$\frac{f^{(k)}(0)}{k!}k!$	$(1) + 1.001e^{+00} - 1.554e^{-15}i$	$(3) - 1.000e^{+00} + 1.886e^{-13}i$
	2) + 1.130 e^{-14} + 9.878 $e^{-03}i$	$(5) + 1.000e^{+00} + 2.830e^{-11}i$
	3) $-1.051e^{+00} + 4.002e^{-14}i$	7) $-1.007e^{+00} + 2.597e^{-09}i$
	Condition n.: 1.127 <i>e</i> ⁺⁰³	Condition n.: 6.522 <i>e</i> ⁺⁰³

Toy Model: sin(x)

4 equally spaced input points/in range (0, 0.5i]

Points, Parity and 1st derivative 1) + 1.000 e^{+00} + 1.858 $e^{-15}i$ 3) $-1.000e^{+00} + 3.546e^{-13}i$ $5) + 1.000e^{+00} + 9.966e^{-11}i^{-1}$ $(7) - 1.000e^{+00} + 2.614e^{-08}i$ $f^{(k)}(0)$ 9) + 1.000 e^{+00} + 5.224 $e^{-06}i$ $(11) - 1.005e^{+00} + 5.798e^{-04}i$ 13) + 5.220 e^{-03} - 3.019 $e^{-06}i$ $(15) - 1.262e^{-05} + 7.304e^{-09}i$ Condition n.: 5.658e⁺²⁰ 1) + 1.000 e^{+00} + 3.281 $e^{-15}i$ 3) $-1.000e^{+00} - 4.122e^{-13}i$ $(-7) - 1.000e^{+00} - 1.217e^{-06}i$ $5) + 1.000e^{+00} - 1.145e^{-09}i$ $\frac{f^{(k)}(0)}{k!}k!$ 9) + 1.000 e^{+00} - 9.956 $e^{-04}i$ $(11) - 9.729e^{-01} - 6.334e^{-01}i$ $(13) + 1.294e^{+01} - 2.826e^{+02}i$ $(15) + 2.789e^{+03} - 6.651e^{+04}i$ Condition n.: 6.385e⁺⁰⁸

M. Aliberti & F. Di Renzo

With LatticeQCD data¹

Objective:

the barion number density $\chi_1(\mu)$ at $\mu=0$

The first two nontrivial derivatives of

Input data:

Baryon number density for

 $\mu \in \{+0.3928i, +0.7853i, +1.178i, +1.5709i\}$

	χ ₂ (0)	χ ₄ (0)	Cond. n.
$\chi_k(0)$	0.12278	0.466	352
$\frac{\chi_k(0)}{(k-1)!}$	0.12278	0.466	291
$\chi_k^{odd}(0)$	0.10973 ± 0.00140	0.081 ± 0.028	$3.25e^{+5}$
$rac{\chi_k^{odd}(0)}{(k-1)!}$	0.10973	0.081	489
HotQCD	0.10870 ± 0.00004	0.084 ± 0.004	

¹From the Bielefeld-Parma collaboration

In Conclusion...

Discrepancy between HotQCD data and Bielefeld-Parma data is less than the error obtained through statistical bootstrap

Lower order derivatives more stable than higher order derivatives

In the future:

Thorough study of statistical errrors

Comparison with another method of analytic continuation²

²See talk by F. Di Renzo

