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Taylor coeffs from imaginary µ Motivations

The Sign Problem

▶ The study of the phase diagram requires
finite baryon number density

▶ Finite density lattice simulations ⇒
chemical potential µ ̸= 0

▶ Generic µ ⇒ complex Dirac determinant,
leads to sign problem

▶ For purely imaginary values of µ the Dirac
determinant remains real

▶ Methods to extrapolate physical functions of
real µ from the imaginary axis are needed
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Taylor coeffs from imaginary µ Motivations

Imaginary µ

Reµ

Imµ

▶ Data from simulations at
imaginary µ

▶ Analytic continuation to
real µ

▶ Propagation of the
statistical uncertainty?

▶ Radius of convergence?

Find the Taylor coefficients at
µ = 0
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Taylor coeffs from imaginary µ The Method

Taylor Expansion of a Generic Function
Dataset

{f (x0), . . . , f (xN−1)}

f (x0) =
N−1∑
k=0

1

k!
f (k)(0)xk0 + O(xN)

...

f (xN−1) =
N−1∑
k=0

1

k!
f (k)(0)xkN−1 + O(xN)

N Linear Equations!

N Unknown Parameters

f (k)(0) or 1
k! f

(k)(0), k = 0, . . . ,N − 1
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Taylor coeffs from imaginary µ The Method

Generic Function and its First Derivative
Dataset

{f (x0), . . . , f (xN−1)}, {f ′(xN), . . . , f ′(xN+M−1)}

f (xi ) =
N+M−1∑

k=0

1

k!
f (k)(0)xki + O(xN+M)

...

f ′(xj) =
N+M−1∑

k=1

k

k!
f (k)(0)xk−1

j + O(xN+M−1)

i = 0, . . . ,N − 1

N +M Linear Equations!

j = N, . . . ,N +M − 1

N +M Unknown Parameters

f (k)(0) or 1
k! f

(k)(0), k = 0, . . . ,N +M − 1
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Taylor coeffs from imaginary µ The Method

Odd Function and its First Derivative
Dataset

{f (x0), . . . , f (xN−1)}, {f ′(xN), . . . , f ′(xN+M−1)}, f (−x) = −f (x)



f (xi ) ≈
N+M−1∑

k=0

1

(2k + 1)!
f (2k+1)(0)x2k+1

i

...

f ′(xj) ≈
N+M−1∑

k=0

2k + 1

(2k + 1)!
f (2k+1)(0)x2kj

i = 0, . . . ,N − 1

N +M Linear Equations!

j = N, . . . ,N +M − 1

N +M Unknown Parameters

f (2k+1)(0) or 1
(2k+1)! f

(2k+1)(0), f (2k)(0) = 0, k = 0, . . . ,N +M − 1
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The Linear System (1)



1 x0
x2
0

2! . . .
x
(N−3)
0

(N−3)!
x
(N−2)
0

(N−2)!
x
(N−1)
0

(N−1)!

1 x1
x2
1

2! . . .
x
(N−3)
1

(N−3)!
x
(N−2)
1

(N−2)!
x
(N−1)
1

(N−1)!
...

...
...

. . .
...

...
...

1 xN−2
x2
N−2

2! . . .
x
(N−3)
N−2

(N−3)!

x
(N−2)
N−2

(N−2)!

x
(N−1)
N−2

(N−1)!

1 xN−1
x2
N−1

2! . . .
x
(N−3)
N−1

(N−3)!

x
(N−2)
N−1

(N−2)!

x
(N−1)
N−1

(N−1)!





f (0)
f (1)(0)
f (2)(0)

...
f (N−3)(0)
f (N−2)(0)
f (N−1)(0)


=


f (x0)
f (x1)
...

f (xN−2)
f (xN−1)



▶ Pro: More accurate results

▶ Con: Worse condition number

Condition Number

Cond(A) = |λmax(A)|
|λmin(A)| ,

λmin/max(A) = min/max eigenvalue of A
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The Linear System (2)


1 x0 x20 . . . x

(N−3)
0 x

(N−2)
0 x

(N−1)
0

1 x1 x21 . . . x
(N−3)
1 x

(N−2)
1 x

(N−1)
1

...
...

...
. . .

...
...

...

1 xN−2 x2N−2 . . . x
(N−3)
N−2 x

(N−2)
N−2 x

(N−1)
N−2

1 xN−1 x2N−1 . . . x
(N−3)
N−1 x

(N−2)
N−1 x

(N−1)
N−1





f (0)
f (1)(0)
f (2)(0)

2!
...

f (N−3)(0)
(N−3)!
f (N−2)(0)
(N−2)!
f (N−1)(0)
(N−1)!


=


f (x0)
f (x1)
...

f (xN−2)
f (xN−1)



▶ Pro: Better condition number

▶ Con: Less accurate results

Condition Number

Cond(A) = |λmax(A)|
|λmin(A)| ,

λmin/max(A) = min/max eigenvalue of A
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Taylor coeffs from imaginary µ Results

Toy Model: sin(x)
4 equally spaced input points in range (0, 0.5i ]

Points Only Points and Parity

f (k)(0)

0)− 9.519e−21 − 6.183e−05i 1) + 1.000e+00 + 1.205e−15i

1) + 1.001e+00 + 0.000e+00i 3)− 1.000e+00 + 1.972e−13i

2) + 9.660e−17 + 9.878e−03i 5) + 1.000e+00 + 2.959e−11i

3)− 1.051e+00 + 3.075e−16i 7)− 1.007e+00 + 2.716e−09i

Condition n.: 5.044e+03 Condition n.: 2.975e+07

f (k)(0)
k! k!

0)− 1.294e−16 − 6.183e−05i 1) + 1.000e+00 + 1.150e−15i

1) + 1.001e+00 − 1.554e−15i 3)− 1.000e+00 + 1.886e−13i

2) + 1.130e−14 + 9.878e−03i 5) + 1.000e+00 + 2.830e−11i

3)− 1.051e+00 + 4.002e−14i 7)− 1.007e+00 + 2.597e−09i

Condition n.: 1.127e+03 Condition n.: 6.522e+03
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Taylor coeffs from imaginary µ Results

Toy Model: sin(x)
4 equally spaced input points in range (0, 0.5i ]

Points, Parity and 1st derivative

f (k)(0)

1) + 1.000e+00 + 1.858e−15i 3)− 1.000e+00 + 3.546e−13i

5) + 1.000e+00 + 9.966e−11i 7)− 1.000e+00 + 2.614e−08i

9) + 1.000e+00 + 5.224e−06i 11)− 1.005e+00 + 5.798e−04i

13) + 5.220e−03 − 3.019e−06i 15)− 1.262e−05 + 7.304e−09i

Condition n.: 5.658e+20

f (k)(0)
k! k!

1) + 1.000e+00 + 3.281e−15i 3)− 1.000e+00 − 4.122e−13i

5) + 1.000e+00 − 1.145e−09i 7)− 1.000e+00 − 1.217e−06i

9) + 1.000e+00 − 9.956e−04i 11)− 9.729e−01 − 6.334e−01i

13) + 1.294e+01 − 2.826e+02i 15) + 2.789e+03 − 6.651e+04i

Condition n.: 6.385e+08

8/10 M. Aliberti & F. Di Renzo



Taylor coeffs from imaginary µ Results

With LatticeQCD data1

Objective:
The first two nontrivial derivatives of

the barion number density χ1(µ) at µ = 0

Input data:
Baryon number density for

µ ∈ {+0.3928i ,+0.7853i ,+1.178i ,+1.5709i}

χ2(0) χ4(0) Cond. n.

χk(0) 0.12278 0.466 352

χk (0)
(k−1)! 0.12278 0.466 291

χodd
k (0) 0.10973± 0.00140 0.081± 0.028 3.25e+5

χodd
k (0)

(k−1)! 0.10973 0.081 489

HotQCD 0.10870± 0.00004 0.084± 0.004

1From the Bielefeld-Parma collaboration
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Taylor coeffs from imaginary µ Conclusions

In Conclusion...

▶ Discrepancy between HotQCD data and Bielefeld-Parma data is less than
the error obtained through statistical bootstrap

▶ Lower order derivatives more stable than higher order derivatives

In the future:

▶ Thorough study of statistical errrors

▶ Comparison with another method of analytic continuation2

2See talk by F. Di Renzo
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