Results

Continuum extrapolated high order baryon fluctuations Phys.Rev.D 110 (2024) 1 [Borsanyi:2023wno]

Jana N. Guenther, Szabolcs Borsanyi, Zoltan Fodor, Sandor D. Katz, Paolo Parotto, Attila Pasztor, David Pesznyak, Kalman K. Szabo and Chik Him Wong

August 2nd 2024

0.00

Fluctuations on the lattice

$$\chi_{i,j,k}^{B,Q,S} = \frac{\partial^{i+j+k}(p/T^4)}{(\partial\hat{\mu}_B)^i(\partial\hat{\mu}_Q)^j(\partial\hat{\mu}_S)^k}, \ \hat{\mu}_i = \frac{\mu}{T}$$

$$\chi_i^B = \frac{\partial^i(p/T^4)}{(\partial\hat{\mu}_B)^i}$$

$$\chi_i^B = \frac{\partial^i(p/T^4)}{(\partial\hat{\mu}_B)^i}$$

0.30

[Borsanyi:2018grb]

0.00

2 State of the art

Why fluctuations?

Results

The Equation of State from fluctuations

[Bollweg:2022fqq] From Taylorexpansion

From Padé approximants

Why fluctuations?

 \blacksquare Extrapolation of Equation of State to finite $\mu \longrightarrow$ important for heavy ion collision phenomenology

Experimental signature for critical endpoint: non-monotonic behavior of $\frac{\chi_4^B}{\chi_2^B}(\mu_B)$ ([Stephanov:2011pb], [Mroczek:2020rpm])

Experimental signature for critical endpoint: non-monotonic behavior of $\frac{\chi_4^B}{\chi_2^B}(\mu_B)$ ([Stephanov:2011pb], [Mroczek:2020rpm])

Experimental signature for critical endpoint: non-monotonic behavior of $\frac{\chi_4^B}{\chi_2^B}(\mu_B)$ ([Stephanov:2011pb], [Mroczek:2020rpm])

190 200

180

140 150 160 170

130

Experimental signature for critical end-Search for the critical endpoint with lattice non-monotonic behavior of $\frac{\chi_4}{\chi_B^E}(\mu_B)$ QCD by looking at Lee-Yang-Zeros (for exampoint: ple [Giordano:2019slo], [Mukherjee:2019eou], ([Stephanov:2011pb], [Mroczek:2020rpm]) [Giordano:2019gev]. [Basar:2021hdf]) Central Au + Au Collisions STAR (0 - 5%) Ratio C₄/C₂ net-protor (N) < 0.5, 0.4 < p (GeWe) < 2.01 [Dimopoulos:2021vrk] [L 2.0 ||u||1.5 [STAR:2021fge] 0.0 net · proton -1-Ĥ1.V 10 A < 0 (Deblie) < 2 0 RW scaling 50 200 100 ---- chiral scaling Collision Energy VS (GeV) ---- CEP scaling $1.20 - \chi^{B}/\gamma$ $Re[\mu_B/T]$ 16³x8 20³x10 Talk at 12:15 by 1.00 24³v12 - $T_c = 1.0^{+17.1}_{-22.7}$ Tatsuya Wada 0.80 [Borsanvi:2023wno] m((μ_{LY}/T)²)^{(1/β6} y²...:1.08396 12:35 0.60 and 2 0.40 Alexander Adam 0.20 T [MeV] -50 50 100 150 200 0.00 T (MeV)

bv

Why fluctuations?

 \blacksquare Extrapolation of Equation of State to finite $\mu \longrightarrow$ important for heavy ion collision phenomenology

Sensitive to criticallity both in experiment and theory

Resonances from fluctuations

[Alba:2017mqu] see also: [Majumder:2010ik], [Bazavov:2014xya]

Why fluctuations?

 \blacksquare Extrapolation of Equation of State to finite $\mu \longrightarrow$ important for heavy ion collision phenomenology

Sensitive to criticallity both in experiment and theory

San be used to search for new resonances in the Hadron spectrum

Results

Fluctuations and Heavy Ion collision experiments

[Borsanyi:2020fev]

Why fluctuations?

 \blacksquare Extrapolation of Equation of State to finite $\mu \longrightarrow$ important for heavy ion collision phenomenology

Sensitive to criticallity both in experiment and theory

O Can be used to search for new resonances in the Hadron spectrum

Comparison to freeze-out physics in heavy ion collisions

³ Our set-up and analysis

χ_2^B and χ_4^B in the continuum

14/25

State of the art

Our set-up and analysis

Results

χ_6^B and χ_8^B on finite lattices

 $\begin{bmatrix} \mathsf{DElia:2016jqh} \end{bmatrix} \\ N_t = 6, \text{ 2stout} \end{bmatrix}$

Ns

 $\frac{1}{T}$

 $\frac{1}{T}$

Lattice set-up

- 4Hex + dbw2 action
- lattices: $16^3 \times 8$, $20^3 \times 10$, $24^3 \times 12$
- $\mu_{S} = 0$
- scale setting with f_{π} and w_1
- Exponential definition of the chemical potential (introduced like a constant imaginary gauge field) → derivatives with respect to the chemical potential can be shown to be UV finite by virtue of a U(1) symmetry [Hasenfratz:1983ba]

Systematic errors

We have to deal with systematic errors from the continuum extrapolation and the scale setting.

	tn.	t i	
	UI V		

State of the art

Our set-up and analysis

Results

Systematic errors

We have to deal with systematic errors from the continuum extrapolation and the scale setting. Scale setting is done with f_{π} and w_1 .

$$W(t)|_{t=w_1^2} = 0.7 , W(t) \equiv t \frac{d}{dt} \{ t^2 \langle E(t) \rangle \}$$

1.53
1.52
1.51
1.50
1.49
1.48
1.47
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Systematic errors

We have to deal with systematic errors from the continuum extrapolation and the scale setting. Scale setting is done with f_{π} and w_1 . Continuum extrapolation:

$$W(t)|_{t=w_1^2} = 0.7 , W(t) \equiv t \frac{d}{dt} \{ t^2 \langle E(t) \rangle \}$$

1.53

1.52

1.51

1.50

1.49

1.48

1.47

.cont. w₁/w₀ = 1.515(1)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

$$\hat{O}(T, 1/N_{\tau}^2) = \sum_{i=1}^{M} \left(lpha_i + eta_i rac{1}{N_{\tau}^2}
ight) s_i(T) \; ,$$

 s_i : set of basis spline function. We take three different sets of node points.

Systematic errors

We have to deal with systematic errors from the continuum extrapolation and the scale setting. Scale setting is done with f_{π} and w_1 . Continuum extrapolation:

$$W(t)|_{t=w_1^2} = 0.7 , W(t) \equiv t \frac{d}{dt} \{ t^2 \langle E(t) \rangle \}$$

1.53

1.52

1.51

1.50

1.49

1.49

1.48

1.47

 $cont. w_1/w_0 = 1.515(1)$

 a^2/w_0^2

 a^2/w_0^2

 a^2/w_0^2

 a^2/w_0^2

$$\hat{O}(T, 1/N_{\tau}^2) = \sum_{i=1}^{M} \left(lpha_i + eta_i rac{1}{N_{\tau}^2}
ight) s_i(T) \; ,$$

 s_i : set of basis spline function. We take three different sets of node points.

The final results are obtained by combining the $6 = 2 \times 3$ analyses to construct a histogram.

³ Our set-up and analysis

Results

Results

Results

Results

Results

Results

Results

Results

Results

Results

Strangness neutrality: $\langle n_S \rangle = 0 - Continuum$ results

Strangness neutrality: $\langle n_S \rangle = 0$ – Continuum results

Strangness neutrality: $\langle n_S \rangle = 0$ –Comparision with different actions

Conclusion

- First continuum extrapolated results for high order baryon number fluctuations
- A 4Hex + dbw2 action allowed for a continuum limit from $N_t = 8, 10, 12$
- With LT = 2 the volume effects are under control in the low temperature region.

ixesuiu	

T [MeV]	$16^3 imes 8$	$20^3 imes 10$	$24^3 imes 12$
130	31741	71090	68689
135	33528	106403	66960
140	34977	69690	75229
145	336975	188571	111435
150	65374	108481	81590
155	34057	96985	89559
160	37145	68619	94053
165	156044	67668	98744
170	34397	42314	11831
175	34180	36522	12089
180	30594	25229	12727
185	30951	18396	13066
190	30293	18267	7141
195	31276	15008	7199
200	31919	13346	7390

Table: Number of configurations analyzed on our three lattice geometries.