The temperature of QCDs chiral transition at its tricritical point *About the type of phase transition in massless many-flavour QCD*

in collaboration with Owe Philipsen & Reinhold Kaiser

Jan Philipp Klinger Lattice 2024 Liverpool 30.07.2024

Why study massless QCD?

- \bullet Phase diagram at physical point is conjectured for $\mu \gtrsim 4T$
	- Existence of a 1st order transition?

Constraints from chiral limit:

- Physical QCD could fall into scaling region of chiral limit
- Ordering of temperatures:

$$
T_c (m_{u,d} = 0, \mu_B = 0) > T_{tric} (m_{u,d} = 0, \mu_B = \mu_{tric}) > T_{cep} (m_{u,d}^{phys}, \mu^{cep})
$$

Why study massless QCD?

- \bullet Phase diagram at physical point is conjectured for $\mu \gtrsim 4T$
	- Existence of a 1st order transition?

Constraints from chiral limit:

- Physical QCD could fall into scaling region of chiral limit
- Ordering of temperatures:

$$
T_c (m_{u,d} = 0, \mu_B = 0) > T_{tric} (m_{u,d} = 0, \mu_B = \mu_{tric}) > T_{cep} (m_{u,d}^{phys}, \mu^{cep})
$$

Understand chiral phase transition in the chiral limit $m=0$ **■** Columbia plot Take step back to $\mu=0$: $__$

- Open Question: order of chiral transition for massless quarks $m=0$ for different N_f
	- \circ Problem: $m=0$ cannot be simulated on the lattice
- \bullet **[Pisarski, Wilczek 83]:** $N_f=3$ is 1st order, $N_f=2$ depends on axial anomaly

But: Evidence of 2nd order chiral limit

 $\bullet \quad \forall N_f \lesssim 6:$ 2nd order **[Cuteri, Philipsen, Sciarra 21]**

- Open Question: order of chiral transition for massless quarks $m=0$ for different N_f
	- \circ Problem: $m=0$ cannot be simulated on the lattice
- **• [Pisarski, Wilczek 83]:** $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly

- Open Question: order of chiral transition for massless quarks $m=0$ for different N_f
	- \circ Problem: $m=0$ cannot be simulated on the lattice
- **[Pisarski, Wilczek 83]:** $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly

- Open Question: order of chiral transition for massless quarks $m=0$ for different N_f
	- \circ Problem: $m=0$ cannot be simulated on the lattice
- \bullet **[Pisarski, Wilczek 83]:** $N_f=3$ is 1st order, $N_f=2$ depends on axial anomaly

But: Evidence of 2nd order chiral limit

 $\bullet \quad \forall N_f \lesssim 6:$ 2nd order **[Cuteri, Philipsen, Sciarra 21]**

- Open Question: order of chiral transition for massless quarks $m=0$ for different N_f
	- \circ Problem: $m=0$ cannot be simulated on the lattice
- **• [Pisarski, Wilczek 83]:** $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly

If 1st order region exists, there has to be a tricritical point

But: Evidence of 2nd order chiral limit

- $\bullet \quad \forall N_f \lesssim 6:$ 2nd order **[Cuteri, Philipsen, Sciarra 21]**
	- **FRG** \circ $N_f = 2$: 2nd order **[Braun et al. 23]:** $\circ \forall N_f$: 2nd order (possible) **[Fejos 22], [Fejos, Hatsuda 24]**
	- DSE \circ $N_f = 2, 3$: 2nd order **[Bernhardt, Fischer 23]**
- Conformal Bootstrap
	-

Lattice Setup

QCD with N_f degenerate quarks with mass m :

$$
Z(m, g, N_f) = \int \mathcal{D}A_{\mu} \left[\det D(m, A_{\mu}) \right]^{N_f} e^{-S_G(g, A_{\mu})}
$$

Methodology:

Locate Z2-Boundary

in bare lattice parameter space N_{τ} , N_{f} , β , am :

- unimproved Wilson gauge action S_G
- unimproved staggered fermions D
- bare parameters $\beta = 6/q^2$, am, N_f
- continuum limit $N_{\tau} = 1/aT \rightarrow \infty$

Kurtosis finite size scaling:

- order parameter \mathcal{O} : $\langle \psi \psi \rangle$
- standardized moments:

 $B_n = \frac{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^n \rangle}{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle^{n/2}}$

- phase boundary: $B_3(\beta_{pc}, am, N_s) = 0$
- order of transition: $B_4(\beta_{pc}, am, N_s \to \infty)$

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \Leftrightarrow N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{\tau}^{tric}(N_f)$
- 1st order is a lattice cutoff effect

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \Leftrightarrow N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{\tau}^{tric}(N_f)$
- 1st order is a lattice cutoff effect

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \Leftrightarrow N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{\tau}^{tric}(N_f)$
- 1st order is a lattice cutoff effect

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \Leftrightarrow N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{\tau}^{tric}(N_f)$
- 1st order is a lattice cutoff effect

Tricritical temperatures I

Scale setting:

- measure common UV-Scale: Sommer-scale r_1
	- debatable what "MeV" means away from physical point
- Find $T_{tric}(N_f)$ by extrapolating to $m=0$ for each N_f :

 $T_c(m) = T_{tric} + A \cdot m^{2/5} + B \cdot m^{4/5}$

Tricritical temperature $T_{tric}(N_f)$ decreases with N_f

Tricritical temperatures II

Qualitative picture for massless lattice QCD:

Tricritical temperatures II

Qualitative picture for massless lattice QCD:

Conclusion

QCD in chiral limit

The chiral transition is of 2nd order for $N_f \leq 7$

- Via tricritical scaling: 1st order is a lattice artefact
- No continuum extrapolation needed!

Outlook

- If $T_{tric} (N_f^{tric}(a=0)) = 0$, then:
	- Chiral transition is 2nd order $\,\forall N_f\,$
	- Possible to pinpoint onset of conformal window
- Similar analysis at imaginary chemical potential
	- Talk by Reinhold Kaiser at 14:05

Conclusion

QCD in chiral limit

The chiral transition is of 2nd order for $N_f \leq 7$

- Via tricritical scaling: 1st order is a lattice artefact
- No continuum extrapolation needed!

Outlook

- If $T_{tric} (N_f^{tric}(a=0)) = 0$, then:
	- Chiral transition is 2nd order $\,\forall N_f$
	- Possible to pinpoint onset of conformal window
- Similar analysis at imaginary chemical potential
	- Talk by Reinhold Kaiser at 14:05

Backup Slides

Jan Philipp Klinger Lattice 2024 Liverpool 30.07.2024

T on tricritical Line

Columbia Plot I

- order of thermal phase transition as a function of quark masses m_s and m_ud
- Recent finding [Philipsen, Cuteri, Sciara 21]: 2nd order in chiral limit for Nf=2 and Nf=3
	- contrary to theory [Pisarski, Wilzek]: Nf=3 is 1st order and Nf=2 depends on U(1)_A

Columbia Plot II

Problem: Chiral limit not symulatable on the lattice

Theoretical prediction by Pisarski and Wilzek 1984:

- epsilon expansion in linear sigma model
- \bullet Nf \geq 3 first order
- $Nf = 2$ depends on axial anomaly $U(1)$ A

Columbia Plot III

COLUMBIA PLOT FOR DEGENERATE MASSES

Tricritical scaling: Nf_tric marks onset of 1st order transition

$$
N_f^c(am) = N_f^{tric} + A \cdot am^{2/5} + \mathcal{O}(am^{4/5}).
$$

If there is somewhere first order: Nf tric needs to exist

Our Work:

Map out Z2 phase boundary in m and Nf plane for several lattice spacings

$$
Z(N_{\rm f}, g, m) = \int \mathcal{D}A_{\mu} \left(\det M[A_{\mu}, m]\right)^{N_{\rm f}} e^{-\mathcal{S}_{\rm YM}[A_{\mu}]}.
$$

Find Nf_tric by fitting

1st order region is a cutoff effect

Strategy of our group:

- Map out Z2 phase boundary in (m, N_f) -plane
- Observation: 1st order region shrinks for decreasing lattice spacing

Learning by DefOrmING

Leave physical QCD:

- Chiral symmetry & center symmetry are only approximate at physical point ($m_{u/d}, m_s$)
	- mass is an interesting parameter to vary: chiral QCD (m=0) ←→ quenched QCD (m->infty)
- Columbia Plot: Study QCD with N_f degenerate quarks with mass m at $\mu=0$
	- shows order of deconfinement and chiral thermal transition

- Triple points at $m=0$: 3-state coexistence
- End of triple line: Tricritical point N_f^{tric}

Phase boundary for different lattice spacings

Z2-boundary (β_c, am_c) was mapped out for 4 lattice spacings $N_{\tau} = 4, 6, 8, 10$ and $2 \le N_f \le 7$

- LO + NLO tricritical scaling fits describe data for small am : $N_f^c(am) = N_f^{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5} + \mathcal{O}((am)^{6/5})$
- 1st order region shrinks for decreasing lattice spacing (increasing N_{τ})
- But: No statement about continuum limit and high N_f possible

Chiral limit and the continuum limit

- Demand: First continuum limit ($a \to 0$), then chiral limit ($m \to 0$)
- We do neither: we only map out phase boundary

1st order alternative does not describe data

(a) First-order continuum transition.

(b) Second-order continuum transition.

Computational Strategy

Finite size scaling formula of B_4

 $B_4(\beta_{\text{pc}}; am, N_{\sigma}) =$ $(1.604 + Bx + ...)$ $(1 + CN_{\sigma}^{y_t-y_h} + ...)$

 $y_t = 1/\nu$, y_h : Ising 3D critical exponents, $x = (am - am_c)N_{\sigma}^{1/\nu}$: scaling variable

- \blacksquare fit finite size scaling formula to $B_4(\beta_{\text{pc}}; am, N_{\sigma})$ values
- **determine critical mass** am_c as fit parameter

- order parameter \mathcal{O} : chiral condensate $\langle \bar{\psi}\psi \rangle$
- standardized moments: $B_n = \frac{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^n \rangle}{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle^{n/2}}$
- phase boundary $\beta_{\rm pc}$: $B_3(\beta_{\rm pc}; am, N_{\sigma})=0$
- \blacksquare order of the transition: $B_4(\beta_{\rm pc}; am, N_{\sigma})$
- $B_4(N_\sigma \to \infty)$ values: 1. order $|Z(2)|$ 2. order crossover 1.604 3

Analysis for fixed μ_i , N_f , N_{τ} , am and N_{σ} .

O(a) improved Wilson fermions Nf=3

[Kuramashi et al. PRD 20] - consistent with tricritical scaling

Determining the temperature

Scale Setting:

- \blacksquare T = 1/aNt \rightarrow need to determine lattice spacing a
- relate dimensionless observables on the lattice to physical quantities
- Sommer-scale: characteristic length-scale based on force F(r) between two static quarks

 $F(r_0)r_0^2 = 1.65$ corresponds to $r_0 \simeq 0.5$ fm

■ Get F(r) via static quark potential V(r): F(r)=d/dr V(r)

6.1 Get V(r) via Wilson-Loops
$$
\langle W_c \rangle \sim e^{-F_{q\bar{q}}(C)} = e^{-V(r)n}
$$

Chiral Symmetry

- $SU(N_f)_L \times SU(N_f)_R$ Symmetry
- Projections: $\psi_{L/R} = \frac{1 \mp \gamma_5}{2} \psi$
	- $\mathcal{L}_D = \bar{\psi} \partial \psi = \bar{\psi}_L \partial \psi_L + \bar{\psi}_R \partial \psi_R$
- Order parameter: chiral condensate

 $\langle \bar{\psi}\psi \rangle = \langle \bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L \rangle = \begin{cases} 0, & \text{symmetric} \\ \neq 0, & \text{broken} \end{cases}$

- Mass term breaks symmetry explicitly $\phi = m\bar{\psi}\psi = m(\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L)$
- Symmetry only exact for $m=0$

Center Symmetry

- Global Z_3 Symmetry ○ only for pure Yang-Mills
- Order parameter: polyakov loop

 $\langle P \rangle = \begin{cases} 0, & \text{confined} \quad \text{(center symmetric)} \\ \neq 0, & \text{deconfined} \quad \text{(center broken)} \end{cases}$

- Dynamical quarks break symmetry explicitly \circ broken by $\det D$
- Symmetry only exact for $m \to \infty$
	- since $\lim_{m\to\infty}$ det $D=1$

Conformal Window

Large Nf

- QCD is conformal/scale-invariant at $T=0$
- Bank Saks IR fixed point: α^*

$$
\mathsf{L} \ \ \beta(\alpha^*) = \mu \frac{\partial}{\partial \mu} \alpha^*(\mu) \stackrel{!}{=} 0
$$

- No chiral symmetry breaking anymore
- Onset expected: $8 \lesssim N_f \lesssim 10$
	- [Braun, Gies 06], [Lombardo 10, 12]

Small Nf (≤ 8)

• No scale expect Λ_{QCD}

$$
\quad \ \ \, \rightarrow \ \ T_{\chi_{SB}}, \ \, f_{\pi}, \ \, |\langle \bar{\Psi}\Psi \rangle|^{1/3}, \ldots \ \, \sim \Lambda_{QCD}
$$

● From perturbation theory:

 Λ_{QCD} decreases linearly with N_f

$$
\Leftrightarrow T_{\chi_{SB}} \sim \Lambda_{QCD} \approx 1 - \epsilon N_f + \mathcal{O}\left[(\epsilon N_f)^2 \right]
$$

$$
\rightarrow \Delta T_{\chi_{SB}} = T(N_f) - T(N_f + 1) \approx 25 \; MeV
$$

Coupling vs. Chiral Symmetry

$N_f < 8$: Without IR fixpoint

- Divergent interaction strength in the IR
- \blacksquare Λ_{QCD} decreases with increasing N_f

Strong interactions in the IR: spontaneous symmetry breaking

 $8.05 \leq N_f \leq 16.5$: With IR fixed point

- coupling saturates at fixed point $\alpha^*(N_f) = -\frac{b}{c}$
- fixed point α^* increases with decreasing N_f

Weak interactions in the IR: chirally symmetric

Recent Standing

Critical Flavour Number N_f^{cr}

fRG: rather 12

 $10 \lesssim N_f^{cr} \lesssim 12$ Gies, Jäckel '05

Braun, Gies '05, '06 Braun, Fischer, Gies '11

Lattice:

rather 10

 $10 \lesssim N_f^{cr} \lesssim 12$

Appelquist, Fleming, Neil '08, '09 Fodor et al. '08, '09 Fodor, Holland, Kuti, Nogradi, Schroeder '09 Jin, Mawhinney '09 Deuzeman, Lombardo, Pallante '08, '10, '12

 $8 \lesssim N_f^* \lesssim 9$ Hasenfratz et al. '15, '18, '23

Banks-Zaks Fixed Point

Temperature Scaling I: small Nf

- All IR observables $T_{\chi_{SB}}, f_{\pi}, |\langle \bar{\Psi} \Psi \rangle|^{1/3}, ... \sim \Lambda_{QCD}$
- **■** Estimation of Λ_{QCD} :

Integrate
\n
$$
\mu \frac{\partial}{\partial \mu} \alpha(\mu) = -b\alpha^2(\mu) \quad with \quad b = \frac{1}{6\pi} (11N_c - 2N_f)
$$
\n
$$
\frac{1}{\alpha(\mu)} = \frac{1}{\alpha(\mu_0)} + b \ln \frac{\mu}{\mu_0}
$$
\n
$$
\frac{1}{\alpha(\Lambda_{QCD})} = \frac{1}{\alpha(\mu_0)} + b \ln \frac{\Lambda_{QCD}}{\mu_0} \to 0
$$

Linearity
\n
$$
T_{XSB} \sim \Lambda_{QCD} \approx \mu_0 \exp\left[-\frac{1}{b\alpha(\mu_0)}\right]
$$
\n
$$
\approx \mu_0 \exp\left[-\frac{6\pi}{11N_c\alpha(\mu_0)}\right] \left(1 - \epsilon N_f + \mathcal{O}\left[(\epsilon N_f)^2\right]\right)
$$

$$
\epsilon = \frac{12\pi}{121N_c^2\alpha(\mu_0)} \approx 0.107 \quad \text{for} \quad N_c = 3 \quad \text{and} \quad \mu_0 = m_\tau
$$

 Λ_{QCD} decreases with increasing N_f g^2 $N_{\rm f}$ ĸ [Braun, modified] larsch et al. '03) $\overline{2}$ $\overline{3}$ N_f [Braun] $\Delta T_{\chi_{SB}} = T(N_f) - T(N_f + 1) \approx 25 \; MeV$

Temperature Scaling II: Power-law

- **■** Assumption: onset of chiral symmetry breaking requires $g^2 > g_{cr}^2$
- k_{cr} is defined by $g^2_*(N_f) = g^2_{cr}$
- Estimation of k_{cr} by linearizing beta function:

Integrate
$$
k \frac{\partial}{\partial k} g^2 = -\Theta(g^2 - g_*^2) + \mathcal{O}\left[(g^2 - g_*^2)^2\right]
$$

$$
g^2(k) = g_*^2 - \left(\frac{k}{k_0}\right)^{|\Theta|}
$$

$$
g(k_{cr}) = g_{cr}
$$

$$
k_{cr} \simeq k_0 \left(g_*^2 - g_{cr}^2\right)^{\frac{1}{|\Theta|}}
$$

■ Linearize coupling in Nf: $g^2_*(N_f)-g^2_{cr}(N_f^{cr})=\alpha(N_f-N_f^{cr})+\mathcal{O}\left[(N_f-N_f^{cr})^2\right]$

$$
T_{\chi_{SB}} \sim k_{cr} \simeq k_0 \left| N_f - N_f^{cr} \right|^{\frac{1}{|\Theta|}}.
$$

Disclaimer: $k_{x_{SB}}$ is upper limit for onset of chiral symmetry