The temperature of QCDs chiral transition at its tricritical point *About the type of phase transition in massless many-flavour QCD*

in collaboration with Owe Philipsen & Reinhold Kaiser

Jan Philipp Klinger Lattice 2024 Liverpool 30.07.2024

Why study massless QCD?

- Phase diagram at physical point is conjectured for $\mu\gtrsim 4T$
 - Existence of a 1st order transition?

Constraints from chiral limit:

- Physical QCD could fall into scaling region of chiral limit
- Ordering of temperatures:

$$T_c (m_{u,d} = 0, \mu_B = 0) > T_{tric} (m_{u,d} = 0, \mu_B = \mu_{tric}) > T_{cep} (m_{u,d}^{phys}, \mu^{cep})$$

Why study massless QCD?

- Phase diagram at physical point is conjectured for $\mu\gtrsim 4T$
 - Existence of a 1st order transition?

Constraints from chiral limit:

- Physical QCD could fall into scaling region of chiral limit
- Ordering of temperatures:

$$T_c(m_{u,d} = 0, \mu_B = 0) > T_{tric}(m_{u,d} = 0, \mu_B = \mu_{tric}) > T_{cep}(m_{u,d}^{phys}, \mu^{cep})$$

- Open Question: order of chiral transition for massless quarks m = 0 for different N_f
 - \circ $\ \ \, {\rm Problem:}\ \ \, m=0\ \, {\rm cannot}\ {\rm be\ simulated}\ {\rm on\ the\ lattice}$
- [Pisarski, Wilczek 83]: $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly
 - If 1st order region exists, there has to be a tricritical point

But: Evidence of 2nd order chiral limit

• $orall N_f \lesssim 6$: 2nd order [Cuteri, Philipsen, Sciarra 21]

- Open Question: order of chiral transition for massless quarks m = 0 for different N_f
 - \circ $\ \ \, {\rm Problem:}\ \ \, m=0\ \, {\rm cannot}\ {\rm be\ simulated}\ {\rm on\ the\ lattice}$
- [Pisarski, Wilczek 83]: $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly

- Open Question: order of chiral transition for massless quarks m = 0 for different N_f
 - \circ $\ \ \, {\rm Problem:}\ \ \, m=0\ \, {\rm cannot}\ {\rm be\ simulated}\ {\rm on\ the\ lattice}$
- [Pisarski, Wilczek 83]: $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly

- Open Question: order of chiral transition for massless quarks m = 0 for different N_f
 - \circ $\ \ \, {\rm Problem:}\ \ \, m=0\ \, {\rm cannot}\ {\rm be\ simulated}\ {\rm on\ the\ lattice}$
- [Pisarski, Wilczek 83]: $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly

But: Evidence of 2nd order chiral limit

• $orall N_f \lesssim 6$: 2nd order [Cuteri, Philipsen, Sciarra 21]

- Open Question: order of chiral transition for massless quarks m = 0 for different N_f
 - \circ Problem: $m=0\,$ cannot be simulated on the lattice
- [Pisarski, Wilczek 83]: $N_f = 3$ is 1st order, $N_f = 2$ depends on axial anomaly

But: Evidence of 2nd order chiral limit

- $orall N_f \lesssim 6$: 2nd order [Cuteri, Philipsen, Sciarra 21]
 - FRG • $N_f = 2$: 2nd order [Braun et al. 23]: • $\forall N$ = 2nd order (possible) [Eeies 22] [Eeies Heteude 2]
 - $\forall N_f$: 2nd order (possible) [Fejos 22], [Fejos, Hatsuda 24]
 - $\circ \ N_f = 2,3:$ 2nd order

[Bernhardt, Fischer 23]

- Conformal Bootstrap $0 N_{4} = 3 \cdot 2$ and order
 - $\circ N_f = 3:$ 2nd order

DSE

Lattice Setup

QCD with N_f degenerate quarks with mass m:

$$Z(m,g,N_f) = \int \mathcal{D}A_{\mu} \left[\det D(m,A_{\mu})\right]^{N_f} e^{-S_G(g,A_{\mu})}$$

Methodology:

Locate Z2-Boundary

in bare lattice parameter space $\ N_{ au}, \ N_{f}, \ eta, \ am$:

- unimproved Wilson gauge action S_G
- unimproved staggered fermions D
- bare parameters $\beta = 6/g^2, am, N_f$
- continuum limit $N_{ au} = 1/aT o \infty$

Kurtosis finite size scaling:

- order parameter ${\cal O}:~\langle \bar\psi\psi
 angle$
- standardized moments:

$$B_n = \frac{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^n \rangle}{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle^{n/2}}$$

- phase boundary: $B_3(eta_{pc},am,N_s)=0$
- order of transition: $B_4(\beta_{pc}, am, N_s \to \infty)$

1st order	Z(2) 2nd order	crossover
1	1.604	3

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \ \Leftrightarrow \ N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{ au}^{tric}(N_f)$
- ➡ 1st order is a lattice cutoff effect

- **QCD in chiral limit** The chiral transition is of 2nd order for $N_f \leq 7$

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \ \Leftrightarrow \ N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{ au}^{tric}(N_f)$
- 1st order is a lattice cutoff effect

- **QCD in chiral limit** The chiral transition is of 2nd order for $N_f \leq 7$

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \ \Leftrightarrow \ N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{ au}^{tric}(N_f)$
- 1st order is a lattice cutoff effect

- QCD in chiral limit ______ The chiral transition is of 2nd order for $N_f \leq 7$

- Continuum limit \Leftrightarrow origin of plot: $a \to 0 \ \Leftrightarrow \ N_{\tau} = 1/aT \to \infty$
- Massless limit \Leftrightarrow x-axis
- Z2 phase boundary: $aT_c(am) = aT_{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5}$
- 1st order ends at lattice spacing $N_{ au}^{tric}(N_f)$
- 1st order is a lattice cutoff effect

– **QCD in chiral limit** ______ The chiral transition is of 2nd order for $N_f \leq 7$

Tricritical temperatures I

Scale setting:

- measure common UV-Scale: Sommer-scale r_1
 - debatable what "MeV" means away from physical point
- Find $T_{tric}(N_f)$ by extrapolating to m = 0 for each N_f :

 $T_c(m) = T_{tric} + A \cdot m^{2/5} + B \cdot m^{4/5}$

$$\rightarrow$$
 Tricritical temperature $T_{tric}(N_f)$ decreases with N_f

Tricritical temperatures II

Qualitative picture for massless lattice QCD:

Tricritical temperatures II

Qualitative picture for massless lattice QCD:

Conclusion

QCD in chiral limit

The chiral transition is of 2nd order for $N_f \leq 7$

- Via tricritical scaling: 1st order is a lattice artefact
- ➡ No continuum extrapolation needed!

Outlook

- If $T_{tric}\left(N_{f}^{tric}(a=0)\right)=0$, then:
 - ightarrow Chiral transition is 2nd order $orall N_f$
 - Possible to pinpoint onset of conformal window
- Similar analysis at imaginary chemical potential
 - Talk by Reinhold Kaiser at 14:05

Conclusion

QCD in chiral limit

The chiral transition is of 2nd order for $N_f \leq 7$

- Via tricritical scaling: 1st order is a lattice artefact
- ➡ No continuum extrapolation needed!

Outlook

- If $T_{tric}\left(N_{f}^{tric}(a=0)\right)=0$, then:
 - ightarrow Chiral transition is 2nd order $orall N_f$
 - Possible to pinpoint onset of conformal window
- Similar analysis at imaginary chemical potential
 - Talk by Reinhold Kaiser at 14:05

Backup Slides

Jan Philipp Klinger Lattice 2024 Liverpool 30.07.2024

T on tricritical Line

Columbia Plot I

- order of thermal phase transition as a function of quark masses m_s and m_ud
- Recent finding [Philipsen, Cuteri, Sciara 21]: 2nd order in chiral limit for Nf=2 and Nf=3
 - contrary to theory [Pisarski, Wilzek]: Nf=3 is 1st order and Nf=2 depends on U(1)_A

Columbia Plot II

Problem: Chiral limit not symulatable on the lattice

Theoretical prediction by Pisarski and Wilzek 1984:

- epsilon expansion in linear sigma model
- Nf >= 3 first order
- Nf = 2 depends on axial anomaly U(1)_A

Columbia Plot III

COLUMBIA PLOT FOR DEGENERATE MASSES

Tricritical scaling: Nf_tric marks onset of 1st order transition

$$N_f^c(am) = N_f^{tric} + A \cdot am^{2/5} + \mathcal{O}(am^{4/5}).$$

If there is somewhere first order: Nf_tric needs to exist

Our Work:

Map out Z2 phase boundary in m and Nf plane for several lattice spacings

$$Z(N_{\rm f},g,m) = \int \mathcal{D}A_{\mu} \, \left(\det M[A_{\mu},m]\right)^{N_{\rm f}} \, e^{-\mathcal{S}_{\rm YM}[A_{\mu}]}.$$

Find Nf_tric by fitting

1st order region is a cutoff effect

Strategy of our group:

- Map out Z2 phase boundary in (m, N_f) -plane
- Observation: 1st order region shrinks for decreasing lattice spacing

Learning by DefOrmING

Leave physical QCD:

- Chiral symmetry & center symmetry are only approximate at physical point ($m_{u/d},\ m_s$)
 - mass is an interesting parameter to vary: chiral QCD (m=0) \leftrightarrow quenched QCD (m->infty)
- Columbia Plot: Study QCD with N_f degenerate quarks with mass $\,m\,$ at $\,\mu=0$
 - shows order of deconfinement and chiral thermal transition

- Triple points at m = 0: 3-state coexistence
- End of triple line: Tricritical point N_f^{tric}

Phase boundary for different lattice spacings

• Z2-boundary (β_c, am_c) was mapped out for 4 lattice spacings $N_{\tau} = 4, 6, 8, 10$ and $2 \le N_f \le 7$

- LO + NLO tricritical scaling fits describe data for small am: $N_f^c(am) = N_f^{tric} + A \cdot (am)^{2/5} + B \cdot (am)^{4/5} + O((am)^{6/5})$
- 1st order region shrinks for decreasing lattice spacing (increasing $N_{ au}$)
- \Rightarrow But: No statement about continuum limit and high N_f possible

Chiral limit and the continuum limit

- Demand: First continuum limit (a
 ightarrow 0), then chiral limit (m
 ightarrow 0)
- We do neither: we only map out phase boundary

1st order alternative does not describe data

(a) First-order continuum transition.

(b) Second-order continuum transition.

Computational Strategy

Finite size scaling formula of B_4

 $B_4(\beta_{pc}; am, N_{\sigma}) = (1.604 + Bx + \dots) \left(1 + CN_{\sigma}^{y_t - y_h} + \dots \right)$

 $y_t = 1/\nu$, y_h : Ising 3D critical exponents, $x = (am - am_c)N_{\sigma}^{1/\nu}$: scaling variable

- fit finite size scaling formula to B₄(β_{pc}; am, N_σ) values
- determine critical mass am_c as fit parameter

- order parameter \mathcal{O} : chiral condensate $\langle \bar{\psi}\psi \rangle$
- standardized moments: $B_n = \frac{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^n \rangle}{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle^{n/2}}$
- Phase boundary β_{pc} : $B_3(\beta_{pc}; am, N_{\sigma}) = 0$
- order of the transition: $B_4(\beta_{\rm pc}; am, N_{\sigma})$
- $B_4(N_{\sigma} \to \infty) \text{ values:}$ 1. order Z(2) 2. order crossover
 1 1.604 3

Analysis for fixed μ_i , N_f , N_{τ} , am and N_{σ} .

O(a) improved Wilson fermions Nf=3

[Kuramashi et al. PRD 20] - consistent with tricritical scaling

Determining the temperature

Scale Setting:

- T = $1/aNt \rightarrow$ need to determine lattice spacing a
- relate dimensionless observables on the lattice to physical quantities
- Sommer-scale: characteristic length-scale based on force F(r) between two static quarks

$$F(r_0)r_0^2 = 1.65$$
 corresponds to $r_0 \simeq 0.5$ fm

Get F(r) via static quark potential V(r): F(r)=d/dr V(r)

Get V(r) via Wilson-Loops
$$\langle W_{\mathcal{C}} \rangle \sim e^{-F_{q\bar{q}}(\mathcal{C})} = e^{-V(r)n}$$

Symmetries of QCD

Chiral Symmetry

- $SU(N_f)_L \times SU(N_f)_R$ Symmetry
- Projections: $\psi_{L/R} = \frac{1 \mp \gamma_5}{2} \psi$
 - $\circ \quad \mathcal{L}_D = \bar{\psi} \partial \psi = \bar{\psi}_L \partial \psi_L + \bar{\psi}_R \partial \psi_R$
- Order parameter: chiral condensate

 $\circ \quad \langle \bar{\psi}\psi \rangle = \langle \bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L \rangle = \begin{cases} 0, & \text{symmetric} \\ \neq 0, & \text{broken} \end{cases}$

- Mass term breaks symmetry explicitly $\circ m\bar{\psi}\psi = m\left(\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L\right)$
- \implies Symmetry only exact for m=0

Center Symmetry

- Global Z₃ Symmetry
 only for pure Yang-Mills
- Order parameter: polyakov loop

 $\circ \quad \langle P \rangle = \begin{cases} 0, & \text{confined} & (\text{center symmetric}) \\ \neq 0, & \text{deconfined} & (\text{center broken}) \end{cases}$

- Dynamical quarks break symmetry explicitly \circ broken by det D
- \implies Symmetry only exact for $\ m \to \infty$
 - $\circ \quad \text{ since } \lim_{m \to \infty} \det D = 1$

Conformal Window

Large Nf

- QCD is conformal/scale-invariant at T=0
- Bank Saks IR fixed point: α^*

- No chiral symmetry breaking anymore
- Onset expected: $8 \lesssim N_f \lesssim 10$
 - [Braun, Gies 06], [Lombardo 10, 12]

Small Nf ($\lesssim 8$)

• No scale expect Λ_{QCD}

- Λ_{QCD} decreases linearly with N_f
 - $\vdash T_{\chi_{SB}} \sim \Lambda_{QCD} \approx 1 \epsilon N_f + \mathcal{O}\left[(\epsilon N_f)^2 \right]$

$$\Box \Delta T_{\chi_{SB}} = T(N_f) - T(N_f + 1) \approx 25 \ MeV$$

Coupling vs. Chiral Symmetry

$N_f < 8$: Without IR fixpoint

- Divergent interaction strength in the IR
- Λ_{QCD} decreases with increasing N_f

Strong interactions in the IR: → spontaneous symmetry breaking

 $8.05 \leq N_f \leq 16.5$: With IR fixed point

- coupling saturates at fixed point $\alpha^*(N_f) = -\frac{\sigma}{c}$
- fixed point α^* increases with decreasing N_f

Weak interactions in the IR:

chirally symmetric

Recent Standing

Critical Flavour Number N_f^{cr}

fRG: rather 12 $10 \lesssim N_f^{cr} \lesssim 12$

Gies, Jäckel '05 Braun, Gies '05, '06 Braun, Fischer, Gies '11

Lattice:

rather 10

 $10 \lesssim N_f^{cr} \lesssim 12$

Appelquist, Fleming, Neil '08, '09 Fodor et al. '08, '09 Fodor, Holland, Kuti, Nogradi, Schroeder '09 Jin, Mawhinney '09 Deuzeman, Lombardo, Pallante '08, '10, '12

Banks-Zaks Fixed Point

Temperature Scaling I: small Nf

- All IR observables $T_{\chi_{SB}}$, f_{π} , $|\langle \bar{\Psi}\Psi \rangle|^{1/3}$,... ~ Λ_{QCD}
- Estimation of Λ_{QCD} :

Integrate
$$\mu \frac{\partial}{\partial \mu} \alpha(\mu) = -b\alpha^{2}(\mu) \quad with \quad b = \frac{1}{6\pi} (11N_{c} - 2N_{f})$$
$$\frac{1}{\alpha(\mu)} = \frac{1}{\alpha(\mu_{0})} + b \ln \frac{\mu}{\mu_{0}}$$
$$\frac{1}{\alpha(\Lambda_{QCD})} = \frac{1}{\alpha(\mu_{0})} + b \ln \frac{\Lambda_{QCD}}{\mu_{0}} \to 0$$

$$\epsilon = \frac{12\pi}{121N_c^2\alpha(\mu_0)} \approx 0.107 \text{ for } N_c = 3 \text{ and } \mu_0 = m_{\tau}$$

 Λ_{QCD} decreases with increasing N_e g²' N₊ [Braun, modified] N_f [Braun] $\Delta T_{\gamma_{SB}} = T(N_f) - T(N_f + 1) \approx 25 \ MeV$

Temperature Scaling II: Power-law

- Assumption: onset of chiral symmetry breaking requires $g^2 > g_{cr}^2$
- k_{cr} is defined by $g_*^2(N_f) = g_{cr}^2$
- Estimation of k_{cr} by linearizing beta function:

Integrate

$$k \frac{\partial}{\partial k} g^{2} = -\Theta(g^{2} - g_{*}^{2}) + \mathcal{O}\left[(g^{2} - g_{*}^{2})^{2}\right]$$

$$g^{2}(k) = g_{*}^{2} - \left(\frac{k}{k_{0}}\right)^{|\Theta|}$$

$$k_{cr} \simeq k_{0} \left(g_{*}^{2} - g_{cr}^{2}\right)^{\frac{1}{|\Theta|}}$$

• Linearize coupling in Nf: $g_*^2(N_f) - g_{cr}^2(N_f^{cr}) = \alpha(N_f - N_f^{cr}) + \mathcal{O}\left[(N_f - N_f^{cr})^2\right]$

$$T_{\chi_{SB}} \sim k_{cr} \simeq k_0 \left| N_f - N_f^{cr} \right|^{\frac{1}{|\Theta|}}$$

Disclaimer: $k_{\chi_{SB}}$ is upper limit for onset of chiral symmetry