Condensation of lighter-than-physical pions in QCD

B. Brandt, V. Chelnokov, F. Cuteri, G. Endrődi

01.08.2024, LATTICE 2024, Liverpool, UK

Partition function of 2+1 flavour QCD with staggered fermions on the lattice after integration over fermion fields

$$\mathcal{Z} = \int \mathcal{D}U_{\mu} e^{-\beta S_G} \left(\det \mathcal{M}_{ud}\right)^{1/4} \left(\det \mathcal{M}_s\right)^{1/4},$$

$$\mathcal{M}_{ud} = \begin{pmatrix} \not\!\!\!D(\mu_I) + m_{ud} & \lambda\eta_5 \\ -\lambda\eta_5 & \not\!\!\!D(-\mu_I) + m_{ud} \end{pmatrix}, \quad \mathcal{M}_s = \not\!\!\!D(0) + m_s,$$

$$\det \mathcal{M}_{ud} = \det \left(\left(\not\!\!D(\mu_I) + m_{ud} \right)^{\dagger} \left(\not\!\!D(\mu_I) + m_{ud} \right) + \lambda^2 \right)$$

Pandt, Endrődi, Schmalzbauer (2018)

Phase structure in chiral limit, $T-\mu_B$

Possible QCD phase diagram in $T-\mu_B-m_{ud}$ space:

Arsch (2022)

Phase structure in chiral limit, $T-\mu_I$

At zero temerature pion condensation happens at $\mu_I=m_\pi/2$, and for small light quark masses $m_\pi\sim m_{ud}^{1/2}$

Possible (schematic) scenario when going to chiral limit:

Phase structure in chiral limit

At zero temerature pion condensation happens at $\mu_I=m_\pi/2$, and for small light quark masses $m_\pi\sim m_{ud}^{1/2}$

Possible (schematic) scenario when going to chiral limit:

Phase structure in chiral limit

At zero temerature pion condensation happens at $\mu_I = m_{\pi}/2$, and for small light quark masses $m_\pi \sim m_{ud}^{1/2}$

Possible (schematic) scenario when going to chiral limit:

 $m_{ud} = 0$

Phase structure in chiral limit

CRC-TR 211

The above scenario is supported by following studies:

- NJL models ∂ He, Jin, Zhuang (2005)
- FRG study ♂ Svanes, Andersen (2011)

- Staggered fermions, tree-level Symanzik-improved gauge action
- $24^3 \times 8$ lattice with several checks on $32^3 \times 10$ and $36^3 \times 12$.
- o 5 T values (114.37 MeV 141.96 MeV) for μ_I scan
- o at least 5 values of μ_I , $0.1 \leq \mu_I/m_{\pi, \rm phys} \leq 0.7$
- 9 T values (114.37 MeV 160.72 MeV) for T scan at $\mu_I/m_\pi \approx 0.72$.
- 3 values of $\lambda,\, 0.4 \leq \lambda/m_{ud} \leq 1.5$
- at least 200 configurations per parameter set, 5 updates between configurations, 1000 thermalization updates.

$$\left\langle \pi^{\pm} \right\rangle = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \lambda} = \frac{T}{2V} \left\langle \operatorname{Tr} \frac{\lambda}{|\not\!\!D(\mu_I) + m_{ud}|^2 + \lambda^2} \right\rangle$$

Renormalized condensate (additive divergence vanish at $\lambda \rightarrow 0$):

$$\Sigma_{\pi} = \frac{m_{ud}}{m_{\pi}^2 f_{\pi}^2} \left\langle \pi^{\pm} \right\rangle$$

Improved pion condensate

Banks-Casher type relation for the pion condensate

$$\left\langle \operatorname{Tr} \frac{\lambda}{|\not\!\!D(\mu_I) + m_{ud}|^2 + \lambda^2} \right\rangle = \left\langle \sum_n \frac{\lambda}{\xi_n^2 + \lambda^2} \right\rangle \;,$$

where ξ_n is the n-th singular value of the Dirac operator:

$$\left(\mathcal{D}(\mu_I) + m_{ud} \right)^{\dagger} \left(\mathcal{D}(\mu_I) + m_{ud} \right) \phi_n = \xi_n^2 \phi_n \; .$$

In the infinite volume limit summation can be replaced by integration

$$\left\langle \pi^{\pm} \right\rangle = \frac{\lambda}{2} \left\langle \int_{0}^{\infty} \mathrm{d}\xi \, \frac{\rho(\xi)}{\xi^2 + \lambda^2} \right\rangle \; , \label{eq:phi_eq}$$

and taking the limit $\lambda \rightarrow 0$ we get

$$\left\langle \pi^{\pm} \right\rangle = \frac{\pi}{4} \left\langle \rho(0) \right\rangle \;.$$

Improved pion condensate

We see that in the pion condensate phase $\rho(0) > 0$

 $(\not\!\!D(\mu_I) + m_{ud})$ has singular values close to zero.

Another reason we can not simulate at $\lambda = 0$ (only at small volumes)

At small finite λ , fermion operator condition number $\sim \lambda^{-2}$

- Need to calculate smallest singular values of $(D (\mu_I) + m_{ud})$
 - Chebyshev spectral transformation
- Need to invert an ill-conditioned operator \mathcal{M}_{ud}
 - Exact deflation for low modes

Leading order reweighting

CRC-TR 211

Remaining dependence on λ comes from the configurations sampled at fixed λ – i.e. with weights proportional to

$$(\det \mathcal{M}_{ud})^{1/4} = \left(\det |D\!\!\!/(\mu_I) + m_{ud}|^2 + \lambda^2\right)^{1/4}$$

We can try minimizing the dependence by reweighting the samples with weights

$$W(\lambda) = \frac{\left(\det |\not\!\!D(\mu_I) + m_{ud}|^2 + \lambda_{\rm new}^2\right)^{1/4}}{\left(\det \left[|\not\!\!D(\mu_I) + m_{ud}|^2 + \lambda^2\right]\right)^{1/4}}$$

In the leading order one can write

$$\log W(\lambda) \approx -\frac{\lambda^2 - \lambda_{\text{new}}^2}{4} \operatorname{Tr} \frac{1}{|\not\!\!D(\mu_I) + m_{ud}|^2 + \lambda^2} = -\frac{\lambda^2 - \lambda_{\text{new}}^2}{\lambda} \frac{V}{2T} \pi^{\pm} \,.$$

and use the reweighted observables

$$\langle O \rangle_{RW} = \frac{\langle OW(\lambda) \rangle}{\langle W(\lambda) \rangle}$$

We can use the expansion into singular values to calculate reweighing terms with better precision:

$$\log W(\lambda) = \frac{1}{4} \sum_{i=1}^{n} \log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2}$$

For the smaller ξ_i we can calculate the correction term, and assume that it is negligible for larger ξ_i

$$\log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} = -\frac{\lambda^2 - \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} + \log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} + \frac{\lambda^2 - \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2}$$

$$1 \sum_{i=1}^k \left(-\frac{\xi_i^2 + \lambda^2}{\xi_i^2 + \lambda^2} - \frac{\lambda^2 - \lambda^2}{\xi_i^2 + \lambda^2} \right)$$

$$\log W(\lambda) \approx \log W_{LO}(\lambda) + \frac{1}{4} \sum_{i=1}^{\infty} \left(\log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} + \frac{\lambda^2 - \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} \right)$$

Beyond leading order reweighting

Beyond leading order reweighting

$$T = 132$$
 MeV, $\mu = 0.72 m_{\pi}$

If the observable explicitly depends on λ it has to be taken into account

$$\operatorname{Tr} \frac{\lambda_{\text{new}}}{|\mathcal{D}(\mu_I) + m_{ud}|^2 + \lambda_{\text{new}}^2} \approx \lambda_{\text{new}} \left(\operatorname{Tr} \frac{1}{|\mathcal{D}(\mu_I) + m_{ud}|^2 + \lambda^2} + \operatorname{Tr} \frac{\lambda^2 - \lambda_{\text{new}}^2}{(|\mathcal{D}(\mu_I) + m_{ud}|^2 + \lambda^2)^2} + \sum_{k=1}^m \left(\frac{1}{\xi_k^2 + \lambda_{\text{new}}^2} - \frac{1}{\xi_k^2 + \lambda^2} - \frac{\lambda^2 - \lambda_{\text{new}}^2}{(\xi_k^2 + \lambda^2)^2} \right) \right)$$

Multihistogram reweighting

$$T = 132 \,\, {
m MeV}, \, \mu = 0.53 m_{\pi}$$

Multihistogram reweighting

$$T = 132 \text{ MeV}, \ \mu = 0.72 m_{\pi}$$

O(2) scaling

V. Chelnokov

- lmproved pion condensate observable using the Banks-Casher type relation for the pion condensate is less dependent on λ , and allows to use $\lambda \sim m_{ud}$.
- Reweighting can improve $\lambda \to 0$ extrapolation.
- At half physical light quark mass, the pion condensation boundary remains vertical up to T = 140 MeV. The transition is of the second order, belonging to the O(2) universality class.
- This supports the scenario for the chiral limit, in which the pion condensation phase appears at arbitrary small nonzero μ_I.

Appendix

$$\rho(0) = \lim_{\xi \to 0} \lim_{V \to \infty} \frac{T}{V} \frac{n(\xi)}{\xi}$$

In practice we assume that the lattice volume used is high enough to estimate $\frac{T}{V} \frac{n(\xi)}{\xi}$ for the set of ξ sampling points, and extrapolate the densities to $\xi = 0$.

A check comparing the integrated densities at two lattice volumes shows that if $n(\xi) > 4$ on both lattices the resulting values agree with each other within errors.

- Extract largest singular values of A^{-1} not possible due to diverging condition number.
- $\circ\,$ Krylov-Schur methods converge starting on edges of the spectrum small ξ^2 are denser than large ones, thus converge slower
- Polynomial spectral transformation needs to keep the region of interest at the edge of the spectrum and reduce the singular value density in the region of interest

$$P(A^{\dagger}A)\psi = P(\xi^2)\psi$$

Rate of convergence for ξ_k^2 is governed by the spectral gap ρ_k :

$$\rho_k = \frac{|\xi_{k+1}^2 - \xi_k^2|}{|\xi_{k+1}^2 - \xi_n^2|}$$

Smallest singular values without inversion

Assume we are interested in singular values in $\xi^2 \in [0, a]$, while the whole spectrum is $\xi^2 \in [0, b]$. The polynomial $P_n(x) = T_n\left(\frac{2x-a-b}{b-a}\right)$ transforms all 'uninteresting' ξ^2 to [-1, 1], and the 'interesting' ones quickly grow away from [-1, 1]

Smallest singular values without inversion

Increasing n grows spectral gap ρ , but also increases time to calculate $P_n(A^\dagger A)$ and increases numerical errors. Empirically best n for our problems is in range 1-10 (depending on parameters).

Inversion with exact deflation

CRC-TR 211

To calculate $\mathcal{M}_{ud}^{-1}\psi$ we can use calculated smallest singular values ξ_i^2 and corresponding singular vectors ϕ_i

$$\psi = \psi_r + \sum_{i=1}^k a_i \phi_i , \quad a_i = \phi_i^{\dagger} \psi$$

$$\mathcal{M}_{ud}^{-1}\psi = \mathcal{M}_{ud}^{-1}\psi_r + \sum_{i=1}^k \frac{a_i}{\xi_i^2 + \lambda^2}\phi_i$$

Since ψ_r does not contain singular vectors corresponding to the smallest singular values, the effective condition number of the problem is 150 smallest singular values at $\beta = 3.6, \lambda = 8 \cdot 10^{-4}, \mu = 0.081$ reduces κ from $6 \cdot 10^6$ to $5 \cdot 10^3$

- Needs singular vectors with high precision.
- Sensitive to precision of calculation ψ_r and a_i needs extended precision summation, and sometimes iterated orthogonalization.

For stochastic trace estimation can also reduce fluctuations:

$$\operatorname{Tr} \mathcal{M}_{ud}^{-1} = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \psi_j^{\dagger} \mathcal{M}_{ud}^{-1} \psi_j$$

$$\operatorname{Tr} \mathcal{M}_{ud}^{-1} = \sum_{i=1}^{k} \frac{1}{\xi_i^2 + \lambda^2} + \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \psi_{j,r}^{\dagger} \mathcal{M}_{ud}^{-1} \psi_{j,r}$$

- Implemented for measurements large speed-up since we do many inversions with the same matrix
- $\circ\,$ Not implemented yet for updates most probably will not result in speedup, but can allow simulations at smaller $\lambda\,$