Condensation of lighter-than-physical pions in QCD

B. Brandt, V. Chelnokov, F. Cuteri, G. Endrődi

01.08.2024, LATTICE 2024, Liverpool, UK

Partition function of 2+1 flavour QCD with staggered fermions on the lattice after integration over fermion fields

$$
\mathcal{Z} = \int \mathcal{D}U_{\mu} e^{-\beta S_G} \left(\det \mathcal{M}_{ud} \right)^{1/4} \left(\det \mathcal{M}_s \right)^{1/4},
$$

$$
\mathcal{M}_{ud} = \begin{pmatrix} \not{D}(\mu_I) + m_{ud} & \lambda \eta_5 \\ -\lambda \eta_5 & \not{D}(-\mu_I) + m_{ud} \end{pmatrix}, \quad \mathcal{M}_s = \not{D}(0) + m_s,
$$

$$
\eta_5 = (-1)^{x+y+z+t} , \quad \cancel{D}(\mu_I)^{\dagger} = \eta_5 \cancel{D}(-\mu_I) \eta_5 = -\cancel{D}(-\mu_I) .
$$

$$
\det \mathcal{M}_{ud} = \det \left(\left(\vec{\mathcal{D}}(\mu_I) + m_{ud} \right)^{\dagger} \left(\vec{\mathcal{D}}(\mu_I) + m_{ud} \right) + \lambda^2 \right)
$$

Brandt, Endrődi, Schmalzbauer (2018)

Phase structure in chiral limit, $T-\mu_B$

Possible QCD phase diagram in $T-\mu_B-m_{ud}$ space:

[Karsch \(2022\)](https://arxiv.org/abs/2212.03015)

Phase structure in chiral limit, $T-\mu_I$

At zero temerature pion condensation happens at $\mu_I = m_\pi/2$, and for small light quark masses $m_\pi \sim m_{ud}^{1/2}$ ud

Possible (schematic) scenario when going to chiral limit:

Phase structure in chiral limit

At zero temerature pion condensation happens at $\mu_I = m_\pi/2$, and for small light quark masses $m_\pi \sim m_{ud}^{1/2}$ ud

Possible (schematic) scenario when going to chiral limit:

Phase structure in chiral limit

At zero temerature pion condensation happens at $\mu_I = m_\pi/2$, and for small light quark masses $m_\pi \sim m_{ud}^{1/2}$ ud

Possible (schematic) scenario when going to chiral limit:

Phase structure in chiral limit

CRC - TR

The above scenario is supported by following studies:

- NJL models ∂ [He, Jin, Zhuang \(2005\)](https://doi.org/10.1103/PhysRevD.71.116001)
- FRG study ∂ [Svanes, Andersen \(2011\)](https://doi.org/10.1016/j.nuclphysa.2011.03.007)

- Staggered fermions, tree-level Symanzik-improved gauge action
- $24^3 \times 8$ lattice with several checks on $32^3 \times 10$ and $36^3 \times 12$.
- 5 T values (114.37 MeV 141.96 MeV) for μ_I scan
- \circ at least 5 values of μ_I , $0.1 \leq \mu_I/m_{\pi,\text{phys}} \leq 0.7$
- 9 T values (114.37 MeV 160.72 MeV) for T scan at $\mu_I/m_{\pi} \approx 0.72$.
- ο 3 values of $λ$, $0.4 < λ/m_{ud} < 1.5$
- at least 200 configurations per parameter set, 5 updates between configurations, 1000 thermalization updates.

$$
\left\langle \pi^{\pm}\right\rangle =\frac{T}{V}\frac{\partial\log\mathcal{Z}}{\partial\lambda}=\frac{T}{2V}\left\langle\text{Tr}\,\frac{\lambda}{|\not\!\!D(\mu_I)+m_{ud}|^2+\lambda^2}\right\rangle
$$

Renormalized condensate (additive divergence vanish at $\lambda \to 0$):

$$
\Sigma_{\pi} = \frac{m_{ud}}{m_{\pi}^2 f_{\pi}^2} \left\langle \pi^{\pm} \right\rangle
$$

Improved pion condensate

Banks-Casher type relation for the pion condensate

$$
\left\langle \text{Tr}\, \frac{\lambda}{|\not{D}(\mu_I) + m_{ud}|^2 + \lambda^2} \right\rangle = \left\langle \sum_n \frac{\lambda}{\xi_n^2 + \lambda^2} \right\rangle ,
$$

where ξ_n is the n-th singular value of the Dirac operator:

$$
\left(\rlap{\,/}D(\mu_I) + m_{ud}\right)^{\dagger} \left(\rlap{\,/}D(\mu_I) + m_{ud}\right) \phi_n = \xi_n^2 \phi_n \; .
$$

In the infinite volume limit summation can be replaced by integration

$$
\left\langle \pi^{\pm}\right\rangle =\frac{\lambda}{2}\left\langle \int_{0}^{\infty}\mathrm{d}\xi\,\frac{\rho(\xi)}{\xi^{2}+\lambda^{2}}\right\rangle \;,
$$

and taking the limit $\lambda \to 0$ we get

$$
\left\langle \pi^{\pm}\right\rangle =\frac{\pi}{4}\left\langle \rho(0)\right\rangle .
$$

Improved pion condensate

We see that in the pion condensate phase $\rho(0) > 0$

 $(\psi(\mu_I) + m_{ud})$ has singular values close to zero.

Another reason we can not simulate at $\lambda = 0$ (only at small volumes)

At small finite λ , fermion operator condition number $\sim \lambda^{-2}$

- \circ Need to calculate smallest singular values of $(\psi(\mu_I) + m_{ud})$ ■ Chebyshev spectral transformation
- \circ Need to invert an ill-conditioned operator \mathcal{M}_{ud}
	- \blacksquare Exact deflation for low modes

Leading order reweighting

Remaining dependence on λ comes from the configurations sampled at fixed λ – i.e. with weights proportional to $(\det \mathcal{M}_{ud})^{1/4} = (\det |\cancel{D}(\mu_I) + m_{ud}|^2 + \lambda^2)^{1/4}$ We can try minimizing the dependence by reweighting the samples with weights

$$
W(\lambda) = \frac{\left(\det |\cancel{D}(\mu_I) + m_{ud}|^2 + \lambda_{\text{new}}^2\right)^{1/4}}{\left(\det \left[|\cancel{D}(\mu_I) + m_{ud}|^2 + \lambda^2 \right] \right)^{1/4}}
$$

In the leading order one can write

$$
\log W(\lambda) \approx -\frac{\lambda^2 - \lambda_{\text{new}}^2}{4} \operatorname{Tr} \frac{1}{|\not\!\!D(\mu_I) + m_{ud}|^2 + \lambda^2} = -\frac{\lambda^2 - \lambda_{\text{new}}^2}{\lambda} \frac{V}{2T} \pi^{\pm} ,
$$

and use the reweighted observables

$$
\langle O \rangle_{RW} = \frac{\langle OW(\lambda) \rangle}{\langle W(\lambda) \rangle}
$$

We can use the expansion into singular values to calculate reweighing terms with better precision:

$$
\log W(\lambda) = \frac{1}{4} \sum_{i=1}^{n} \log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2}
$$

For the smaller ξ_i we can calculate the correction term, and assume that it is negligible for larger ξ_i

$$
\log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} = -\frac{\lambda^2 - \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} + \log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} + \frac{\lambda^2 - \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2}
$$

$$
\log W(\lambda) \approx \log W_{LO}(\lambda) + \frac{1}{4} \sum_{i=1}^k \left(\log \frac{\xi_i^2 + \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} + \frac{\lambda^2 - \lambda_{\text{new}}^2}{\xi_i^2 + \lambda^2} \right)
$$

Beyond leading order reweighting

Beyond leading order reweighting

$$
T=132\text{ MeV},\ \mu=0.72m_\pi
$$

If the observable explicitly depends on λ it has to be taken into account

Tr
$$
\frac{\lambda_{\text{new}}}{|\not{D}(\mu_I) + m_{ud}|^2 + \lambda_{\text{new}}^2} \approx
$$

\n
$$
\lambda_{\text{new}} \left(\text{Tr } \frac{1}{|\not{D}(\mu_I) + m_{ud}|^2 + \lambda^2} + \text{Tr } \frac{\lambda^2 - \lambda_{\text{new}}^2}{(|\not{D}(\mu_I) + m_{ud}|^2 + \lambda^2)^2} + \right.
$$
\n
$$
+ \sum_{k=1}^m \left(\frac{1}{\xi_k^2 + \lambda_{\text{new}}^2} - \frac{1}{\xi_k^2 + \lambda^2} - \frac{\lambda^2 - \lambda_{\text{new}}^2}{(\xi_k^2 + \lambda^2)^2} \right)
$$

Multihistogram reweighting

$$
T=132\text{ MeV},\ \mu=0.53m_\pi
$$

Multihistogram reweighting

$$
T=132\text{ MeV},\ \mu=0.72m_\pi
$$

$\overline{O(2)}$ scaling

O(2) scaling $T = 114$ MeV

- ▶ Improved pion condensate observable using the Banks-Casher type relation for the pion condensate is less dependent on λ , and allows to use $\lambda \sim m_{ud}$.
- ▶ Reweighting can improve $\lambda \to 0$ extrapolation.
- \triangleright At half physical light quark mass, the pion condensation boundary remains vertical up to $T = 140$ MeV. The transition is of the second order, belonging to the O(2) universality class.
- \blacktriangleright This supports the scenario for the chiral limit, in which the pion condensation phase appears at arbitrary small nonzero μ_I .

Appendix

We measure $m = 150$ smallest singular values on each sampled configuration. To obtain an estimate of the singular value density at zero we calculate $n(\xi)$ – number of singular values below ξ and take $\rho(0)$ as

$$
\rho(0) = \lim_{\xi \to 0} \lim_{V \to \infty} \frac{T}{V} \frac{n(\xi)}{\xi}
$$

In practice we assume that the lattice volume used is high enough to estimate $\frac{T}{V}$ $n(\xi)$ $\frac{(\zeta)}{\zeta}$ for the set of ξ sampling points, and extrapolate the densities to $\ddot{\xi} = 0$.

A check comparing the integrated densities at two lattice volumes shows that if $n(\xi) > 4$ on both lattices the resulting values agree with each other within errors.

- \circ Extract largest singular values of A^{-1} not possible due to diverging condition number.
- Krylov-Schur methods converge starting on edges of the spectrum small ξ^2 are denser than large ones, thus converge slower
- Polynomial spectral transformation needs to keep the region of interest at the edge of the spectrum and reduce the singular value density in the region of interest

$$
P(A^{\dagger}A)\psi = P(\xi^2)\psi
$$

Rate of convergence for ξ_k^2 is governed by the spectral gap ρ_k :

$$
\rho_k = \frac{|\xi_{k+1}^2 - \xi_k^2|}{|\xi_{k+1}^2 - \xi_n^2|}
$$

Smallest singular values without inversion

Assume we are interested in singular values in $\xi^2\in[0,a]$, while the whole spectrum is $\xi^2 \in [0,b].$ The polynomial $P_n(x)=T_n\left(\frac{2x-a-b}{b-a}\right)$ $\frac{\partial \mathcal{L} - a - b}{\partial b - a} \Big)$ transforms all 'uninteresting' ξ^2 to $[-1, 1]$, and the 'interesting' ones quickly grow away from $[-1, 1]$

Smallest singular values without inversion

Increasing *n* grows spectral gap ρ , but also increases time to calculate $P_n(A^{\dagger}A)$ and increases numerical errors. Empirically best n for our problems is in range $1 - 10$ (depending on parameters).

Inversion with exact deflation

CRC - TR

To calculate $\mathcal{M}_{ud}^{-1}\psi$ we can use calculated smallest singular values ξ_i^2 and corresponding singular vectors ϕ_i

$$
\psi = \psi_r + \sum_{i=1}^k a_i \phi_i , \quad a_i = \phi_i^{\dagger} \psi
$$

$$
\mathcal{M}_{ud}^{-1}\psi = \mathcal{M}_{ud}^{-1}\psi_r + \sum_{i=1}^k \frac{a_i}{\xi_i^2 + \lambda^2} \phi_i
$$

Since ψ_r does not contain singular vectors corresponding to the smallest singular values, the effective condition number of the problem is 150 smallest singular values at $\beta=3.6, \lambda=8\cdot 10^{-4}, \mu=0.081$ reduces κ from $6\cdot10^6$ to $5\cdot10^3$

- \blacktriangleright Needs singular vectors with high precision.
- **•** Sensitive to precision of calculation ψ_r and a_i needs extended precision summation, and sometimes iterated orthogonalization.

For stochastic trace estimation can also reduce fluctuations:

$$
\text{Tr}\, \mathcal{M}_{ud}^{-1} = \lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^n \psi_j^\dagger \mathcal{M}_{ud}^{-1} \psi_j
$$

$$
\text{Tr }\mathcal{M}_{ud}^{-1}=\sum_{i=1}^k \frac{1}{\xi_i^2+\lambda^2}+\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n \psi_{j,r}^\dagger \mathcal{M}_{ud}^{-1}\psi_{j,r}
$$

- \circ Implemented for measurements large speed-up since we do many inversions with the same matrix
- Not implemented yet for updates most probably will not result in speedup, but can allow simulations at smaller λ