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Nonzero isospin chemical potential in QCD cRc’-rm

Partition function of 241 flavour QCD with staggered fermions on the
lattice after integration over fermion fields

Z = / DU, e P96 (det M) /* (det M) 14,

(D(pr) + M A1)s _
Mua = < — A1 D(—pr) + mud> o Mo =DO) +ms,

s = (—1)"= D)t = s P(—pr)ns = —D(—pup) -

det My = det ((P(ur) +mua) " (D(ar) +mua) +32)
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Phase diagram at physical point cRc’-rm
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Phase structure in chiral limit, T—up cRc’-rm

Possible QCD phase diagram in T—pp—m,q space:
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https://arxiv.org/abs/2212.03015

Phase structure in chiral limit, T—p; cRc’-rm

At zero temerature pion condensation happens at p; = m,/2, and for
small light quark masses m, ~ mif

Possible (schematic) scenario when going to chiral limit:

Myg = Myg, phys
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Phase structure in chiral limit cRc’-rm
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Phase structure in chiral limit cRc’-rm

At zero temerature pion condensation happens at p; = m,/2, and for
small light quark masses m, ~ mif

Possible (schematic) scenario when going to chiral limit:
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Phase structure in chiral limit cRc’-rm

The above scenario is supported by following studies:
o NJL models # He, Jin, Zhuang (2005)

o FRG study # Svanes, Andersen (2011)

— Physical point

--- Chiral limit
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https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1016/j.nuclphysa.2011.03.007

Simulation details cRc’-rm

o]

Staggered fermions, tree-level Symanzik-improved gauge action

o 243 x 8 lattice with several checks on 322 x 10 and 363 x 12.

5 T values (114.37 MeV — 141.96 MeV) for uy scan

at least 5 values of yu7, 0.1 < pr /My phys < 0.7

9 T values (114.37 MeV — 160.72 MeV) for T scan at py/my, =~ 0.72.
3 values of A\, 0.4 < A/myq < 1.5

at least 200 configurations per parameter set, 5 updates between
configurations, 1000 thermalization updates.
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Pion condensate cRc’-rm

<7r:t> _Tdlogz T Tr A
S VooN 2V |D(1a1) + myq|? + A2

Renormalized condensate (additive divergence vanish at A — 0):
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Improved pion condensate cRc’-rm

Banks-Casher type relation for the pion condensate

A A
<Tr | D(pr) + mual® + )\2> N <Zn: &+ >\2> ’

where &, is the n-th singular value of the Dirac operator:

(D (1) + mua)t (D (1) + M) b = Ebn -

In the infinite volume limit summation can be replaced by integration

() =5 (L i)

and taking the limit A — 0 we get

(%) = = (pl0)) -
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CRc’-rm

Improved pion condensate
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lll-conditioned fermion operator cRc’-rm

We see that in the pion condensate phase p(0) > 0
(ID(p1) + myq) has singular values close to zero.
Another reason we can not simulate at A = 0 (only at small volumes)

At small finite \, fermion operator condition number ~ A2

o Need to calculate smallest singular values of (ID(ur) + muq)
m Chebyshev spectral transformation

o Need to invert an ill-conditioned operator M4
m Exact deflation for low modes
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Leading order reweighting cRc’-rm

Remaining dependence on A comes from the configurations sampled at
fixed X\ —i.e. with weights proportional to

(det Mud)1/4 (det HD(/L]) + mud’2 + /\2) 1/4
We can try minimizing the dependence by reweighting the samples with
weights

(det [ (1) + mal® + A2e)
(det [1D(r) + maa> +22]) "

In the leading order one can write

W) =

A2 — )2 1 AN =XV
loc W () ~ — new . — new :I:’
e WY 4 |D(pr) + myal? + N2 P
and use the reweighted observables
() _ <OW()\)>
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Beyond leading order reweighting cRc’-rm

We can use the expansion into singular values to calculate reweighing
terms with better precision:

& + Mew
log W (A Zl 52 +>\‘;

For the smaller &; we can calculate the correction term, and assume that it
is negligible for larger &;

log 52 + )‘121ew — _)‘2 — )‘1216w + lOg 62 + >‘121ew + A2 )‘1216w
&+ X &+ g+x - gen

1 E+N2,, A=A,
logW(A) = logWro(A) + 1 Z (log €24 22 + £2 + N2
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Beyond leading order reweighting cRc‘-rm
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Beyond leading order reweighting CRC-TR2n
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Beyond leading order reweighting cRc’-rm

If the observable explicitly depends on A it has to be taken into account

TI_ )\new ~

|D(pr) + muyal® + Mew

1 22— )\2
)\new Tr + Tr new +
|D(pr) + myal? + A2 (1D (1) + ma|? + A2)2
m
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Beyond leading order reweighting

P

V. Chelnokov 16 / 21

0.90

T =132 MeV, u=0.53m,

0.85 A

0.80 A

0.75 1

0.70 A

0.65 A

0.60 A

0.55 A

0.50

0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020
A

CRC-TR2n



Multihistogram reweighting cRc’-rm

T =132 MeV, p = 0.53m,
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Multihistogram reweighting cRc‘-rm

T =132 MeV, p = 0.72m
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Location of the phase transition cRc’-rm
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Summary cRc’-rm

» Improved pion condensate observable using the Banks-Casher type
relation for the pion condensate is less dependent on A, and allows to
use A ~ Mygq.

P> Reweighting can improve A — 0 extrapolation.

> At half physical light quark mass, the pion condensation boundary
remains vertical up to 7' = 140 MeV. The transition is of the second
order, belonging to the O(2) universality class.

» This supports the scenario for the chiral limit, in which the pion
condensation phase appears at arbitrary small nonzero p;.
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Appendix



Extracting singular value density at zero cRc'-rm

We measure m = 150 smallest singular values on each sampled
configuration. To obtain an estimate of the singular value density at zero
we calculate n(£) — number of singular values below & and take p(0) as

o T'n(§)

pl0) = limy Jim ==
In practice we assume that the lattice volume used is high enough to
estimate %@ for the set of & sampling points, and extrapolate the
densities to £ = 0.
A check comparing the integrated densities at two lattice volumes shows
that if n(£) > 4 on both lattices the resulting values agree with each other
within errors.
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Smallest singular values without inversion cRc’-rm

o Extract largest singular values of A~! — not possible due to diverging
condition number.

o Krylov-Schur methods converge starting on edges of the spectrum —
small €2 are denser than large ones, thus converge slower

o Polynomial spectral transformation — needs to keep the region of
interest at the edge of the spectrum and reduce the singular value
density in the region of interest

P(ATA)yp = P(*)y

Rate of convergence for f,% is governed by the spectral gap px:

16641 — &Rl
|§k+1 gn’

Pk =
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Smallest singular values without inversion cRc’-rm

Assume we are interested in singular values in £2 € [0, a], while the whole
spectrum is £2 € [0,b].

The polynomial P, (z) =T, (Mb%’fz_b) transforms all "uninteresting' £2 to
[—1,1], and the 'interesting’ ones quickly grow away from [—1,1]

0 2 4 6 8 0 12 14 16
E 2
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Smallest singular values without inversion cRc’-rm

Increasing n grows spectral gap p, but also increases time to calculate
P,(ATA) and increases numerical errors.

Empirically best n for our problems is in range 1 — 10 (depending on
parameters).
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Inversion with exact deflation cRc'-rm

To calculate M;dl@/z we can use calculated smallest singular values ¢2 and
corresponding singular vectors ¢;

k
b=+ Y i, ai= ol
i=1

k
— — a;
i=1 >

Since v, does not contain singular vectors corresponding to the smallest
singular values, the effective condition number of the problem is 150
smallest singular values at = 3.6, A = 8 -107%, ;1 = 0.081 reduces x from
6-10% to 5-103

» Needs singular vectors with high precision.

> Sensitive to precision of calculation v, and a; — needs extended
precision summation, and sometimes iterated orthogonalization.

V. Chelnokov 26 /21



Inversion with exact deflation cRc’-rm

For stochastic trace estimation can also reduce fluctuations:

1 n
. D t —1

Tr Mud - nll_)IIOlo E Z ijud ¢j

j=1
k 1 1 n
-1 . t —1
TTMy; =) e Tl > Wl Mo,
% j=1

¢ n—oo N
=1

o Implemented for measurements — large speed-up since we do many
inversions with the same matrix

o Not implemented yet for updates — most probably will not result in
speedup, but can allow simulations at smaller A
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