First-order phase transitions in the heavy quark region of lattice QCD at high temperatures and high densities

Shinji Ejiri (Niigata University)

Collaborators:

Kazuyuki Kanaya (Univ. Tsukuba) Masakiyo Kitazawa (YITP, Kyoto Univ.)

Lattice 2024, Liverpool, 2024/7/30

Boundaries of first-order transitions in QCD phase diagram

- We expect that the first-order phase transition in the light mass region expands with increasing density.
- The first-order phase transition region may expand into the heavy quark region.
- We discuss the appearance of first-order phase transitions in the heavy and dense region.

- Effective theory based on the hopping parameter expansion
- Sign problem is mild
- First-order region: narrower as μ

Effective theory based on the hopping parameter expansion

- We expand the quark determinant in terms of the hopping parameter κ .
- The term that winds around the periodic boundary in the time direction is important. $L(N_t, n) = \sum_m L_m(N_t, n) = \sum_m (L_m^+(N_t, n) + L_m^-(N_t, n))$
- Higher order expansion terms $L(N_t, n)$ is very strongly correlated with the leading term: Polyakov loop Ω . $m = 1$ is dominant: $L_1(N_t, n) \approx L(N_t, n)$.

$$
L(N_t, n) = L^0(N_t, n)c_n \operatorname{Re}\Omega
$$

Arg $L_1^+(N_t, n) \approx \operatorname{Arg}\Omega$
(array:2311.11508)

• Effective action in the heavy quark region

$$
S_{\text{eff}} = -6N_{\text{site}}\beta^*P - \frac{N_s^3 \lambda}{2} \left(e^{\frac{\mu}{T}}\Omega + e^{-\frac{\mu}{T}}\Omega^*\right)
$$

$$
\lambda = N_t \sum_{f=1}^{N_f} \sum_{n=N_t}^{n_{\text{max}}} L^0(N_t, n) c_n \kappa_f^n
$$

- Even if the number of expansion terms increases significantly, the effects of higher-order terms can be incorporated.
- Since the calculation cost can be dramatically reduced, calculations with high accuracy are possible.

Finite density Effect

$$
S_{\text{eff}} = -6N_{\text{site}}\beta^*P - N_s^3\lambda \left(\cosh\frac{\mu}{T}\Omega_{\text{R}} + i\sinh\frac{\mu}{T}\Omega_{\text{I}}\right) \qquad (\Omega = \Omega_{\text{R}} + i\Omega_{\text{I}})
$$

• Partition function:

$$
Z = \int DU e^{-S} = \int W(P, \Omega_{\rm R}) e^{6N_{\rm S}^3 N_{\rm t} \beta P} e^{N_{\rm S}^3 \lambda \cosh \frac{\mu}{T} \Omega_{\rm R}} \left\langle \cos \left(N_{\rm S}^3 \lambda \sinh \frac{\mu}{T} \Omega_{\rm I} \right) \right\rangle_{P, \Omega_{\rm R}} dP d\Omega_{\rm R}
$$

- $W(P, \Omega_R)$ is the provability distribution function in terms of (P, Ω_R) .
- For the case of $\mu = 0$, when configurations are generated at $\underline{\beta}$ and $\underline{\lambda}$, the following equations are satisfied at (P, Ω_R) where the configuration generation probability is maximized.

$$
\frac{\partial F(P,\Omega_{\rm R})}{\partial P} = 6N_{\rm S}^3 N_t \beta + \frac{\partial \ln W(P,\Omega_{\rm R})}{\partial P} = 0
$$

$$
\frac{\partial F(P,\Omega_{\rm R})}{\partial \Omega_{\rm R}} = N_{\rm S}^3 \lambda + \frac{\partial \ln W(P,\Omega_{\rm R})}{\partial \Omega_{\rm R}} = 0
$$

- The peak position of $F(P, \Omega_R)$: $\approx \langle P \rangle$, $\langle \Omega_R \rangle$.
- Right figure: $\langle P \rangle$, $\langle \Omega_{\rm R} \rangle$ as functions of β , λ .

•
$$
\frac{\partial \ln W(P,\Omega_{\rm R})}{\partial P}
$$
 and $\frac{\partial \ln W(P,\Omega_{\rm R})}{\partial \Omega_{\rm R}}$ can be measured.

Effect of the complex phase at finite μ

• Avoiding the sign problem, cumulant expansion:

$$
\ln \left\langle \cos \left(N_s^3 \lambda \sinh \frac{\mu}{T} \Omega_I \right) \right\rangle_{P, \Omega_R} = -\frac{1}{2} \left\langle \left(N_s^3 \lambda \sinh \frac{\mu}{T} \Omega_I \right)^2 \right\rangle_c + \frac{1}{4!} \left\langle \left(N_s^3 \lambda \sinh \frac{\mu}{T} \Omega_I \right)^4 \right\rangle_c - \frac{1}{6!} \left\langle \left(N_s^3 \lambda \sinh \frac{\mu}{T} \Omega_I \right)^6 \right\rangle_c + \cdots
$$

$$
\left\langle \theta^2 \right\rangle_c = \left\langle \theta^2 \right\rangle, \qquad \left\langle \theta^4 \right\rangle_c = \left\langle \theta^4 \right\rangle - 3 \left\langle \theta^2 \right\rangle^2, \qquad \left\langle \theta^6 \right\rangle_c = \left\langle \theta^6 \right\rangle - 15 \left\langle \theta^4 \right\rangle \left\langle \theta^2 \right\rangle + 30 \left\langle \theta^2 \right\rangle^3, \cdots
$$

- We approximate $\ln \left(\cos \left(N_{S}^{3} \lambda \sinh \frac{\mu}{T} \right) \right)$ $\frac{\mu}{T} \Omega_{\rm I}$ $P,\Omega_{\rm R}$ \approx $-$ 1 $\frac{1}{2} \left(N_s^3 \lambda \sinh \frac{\mu}{T} \right)$ \overline{T} 2 $\Omega_{\rm I}^2$ for qualitative estimation. (Gaussian approximation)
- If we write (β, λ) that are generated by configuration generation at $\mu = 0$ to be $(\langle P \rangle, \langle \Omega_R \rangle)$ as (β_0, λ_0) , then (β, λ) that are $(\langle P \rangle, \langle \Omega_R \rangle)$ at finite μ are

$$
\beta = \beta_0 + \frac{N_s^3}{12N_t} \left(\lambda \sinh \frac{\mu}{T}\right)^2 \frac{\partial \left\langle \Omega_I^2 \right\rangle_c}{\partial P}, \qquad \lambda \cosh \frac{\mu}{T} = \lambda_0 + \frac{N_s^3}{2} \left(\lambda \sinh \frac{\mu}{T}\right)^2 \frac{\partial \left\langle \Omega_I^2 \right\rangle_c}{\partial \Omega_R}
$$

Fluctuation of the complex phase

6

Phase quenched QCD (Ignore complex phase)

- If we ignore the complex phase, $S_{\text{eff}} = -6N_{\text{site}}\beta^*P N_s^3\lambda\left(\cosh\theta\right)$ μ \overline{T} $\Omega_{\textrm{R}}+i\,\textrm{sinh}$ $\overline{\mu}$ Ŧ Ω_{I}
- Simply replace λ at $\mu = 0$ with $\lambda \cosh \frac{\mu}{T}$ \overline{T} to investigate phase quenched QCD.
- Increasing λ means increasing κ , so increasing λ makes the approximation of the hopping parameter expansion worse.

 μ

• Therefore, we fix λ at a small value and increase μ .

Plaquette in phase quenched QCD

- As $\cosh \frac{\mu}{T}$ \overline{T} increases, the change in plaquette becomes steeper.
- The strong coupling expansion of $\langle P \rangle$ does not depend on $\lambda \cosh \frac{\mu}{T}$ \overline{T} .
- In the confinement phase, $\langle P \rangle$ is consistent with the strong coupling expansion.

Polyakov loop in phase quenched QCD

- First order phase transition at $\lambda = 0$
- Regarding the Polyakov loop, if we look closely at the changing part, the change becomes steeper as μ increases.
- (Ω_R) changes almost perpendicular to the horizontal axis

Effect of the complex phase

• We estimate the change in β by the complex phase.

- P-dependence is much smaller than Ω_R -dependence
- No P dependence in the high temperature phase.
- Hight temperature phase Strong coupling limit (at low temperature) $\partial\big\langle \Omega_\mathrm{I}^2$ 2 $\left(\frac{1}{\partial P}\right)^{1/2}$ $\Omega_{\rm R}$ $= 0$ $\partial \big\langle \Omega_\mathrm{I}^2$ 2 $\left(\frac{1}{\partial P}\right)^{1/2}$ $\Omega_{\rm R}$ > 0 10

Strong coupling limit (low temperature phase)

• Strong coupling expansion of $\left\langle \Omega_{\mathrm{I}}^{2}\right\rangle$ at $\lambda=0$

$$
\langle \Omega_{I}^{2} \rangle = \left\langle \left(\frac{\Omega - \Omega^{*}}{2i} \right)^{2} \right\rangle \approx \frac{1}{2} \langle \Omega \Omega^{*} \rangle \approx \frac{1}{2N_{s}^{6} N_{c}^{2}} \sum_{x,y} \left\langle \text{tr}(UU \cdots U)_{x} \text{tr}(U^{\dagger}U^{\dagger} \cdots U^{\dagger})_{y} \right\rangle
$$

\n
$$
\approx \frac{N_{s}^{3}}{2N_{s}^{6} N_{c}^{2}} \left\langle \text{tr}(UU \cdots U)_{x} \text{tr}(U^{\dagger}U^{\dagger} \cdots U^{\dagger})_{x} \right\rangle + \frac{6N_{s}^{3}}{2N_{s}^{6} N_{c}^{2}} \left\langle \text{tr}(UU \cdots U)_{x} \text{tr}(U^{\dagger}U^{\dagger} \cdots U^{\dagger})_{x+1} \right\rangle + \cdots
$$

\n
$$
\approx \frac{N_{s}^{3}}{2N_{s}^{6} N_{c}^{2}} + \frac{6N_{s}^{3}}{2N_{s}^{6} N_{c}^{2}} N_{c} \left(\frac{\beta}{2N_{c}^{2}} \right)^{N_{t}} = \frac{1}{2N_{s}^{3} N_{c}^{2}} + \frac{3}{N_{s}^{3} N_{c}} \left(\frac{\beta}{2N_{c}^{2}} \right)^{N_{t}}
$$

\n• Plaquette is given by $P \approx \frac{\beta}{2N_{c}^{2}}$
\n• Thus, $\langle \Omega_{1}^{2} \rangle \approx \frac{1}{2N_{s}^{3} N_{c}^{2}} + \frac{3}{N_{s}^{3} N_{c}} (P)^{N_{t}}$
\n• consistent with the simulation data ($P < 0.5 \rangle_{\approx 10^{6}}$
\n• but *P*-dependence is very small.
\n• A large increase near the transition point. $^{2 \times 10^{6}}$
\n• The derivative: $\frac{d(\Omega_{1}^{2})}{dP} \approx \frac{3N_{t}}{N_{s}^{3} N_{c}} (P)^{N_{t}-1}$

Estimation of β shift by the complex phase

Fit function:
$$
\langle \Omega_1^2 \rangle \approx \langle \Omega_1^2 \rangle_{\frac{\lambda = 0}{40}}
$$

\nWe assume
\n $\frac{d\langle \Omega_1^2 \rangle}{dP} = 0$ (high *T* phase)
\n $\frac{d\langle \Omega_1^2 \rangle}{dP} \approx \frac{3N_t}{N_s^3 N_c}$ (*P*)^{N_t-1}(1 – Ω_R) exp(-3 Ω_R) (low *T* phase)
\n $\frac{d\langle \Omega_1^2 \rangle}{dP} \approx \frac{3N_t}{N_s^3 N_c}$ (*P*)^{N_t-1}(1 – Ω_R) exp(-3 Ω_R) (low *T* phase)
\n $\frac{S^{\text{total}}}{S^{\text{total}}}$
\n $\frac{S^{\text$

β

large μ/T .

12

Summary

- First, we discussed the nature of the phase transition of phase-quenched finite-density QCD in the heavy quark region.
- The first-order transition at zero density turns into a crossover as μ is increased, but, when we increase μ further, the change in the plaquette value near the crossover point becomes much steeper.
- Then, we estimate the effect of the complex phase to discuss whether the QCD phase transition changes again to a first-order phase transition at very large μ .
- In the high-temperature phase, the effect of the complex phase is negligible.
- In the low-temperature phase, complex phase effects lead to a steeper change in the plaquette when estimated from the results in the strong coupling limit.
- This effect of the complex phase becomes larger as μ increases.
- This suggests the appearance of a first-order phase transition region at high density.