The 41st Lattice Conference (LAT FICE2024), 2024/7/30, University of Liverpool, UK

0.5

-2.0

1.2

Novel First-order Phase Transition and Critical Points -0.5 (3) Yang-Mills theory ons on $T^2 \times R^2$ 1.0 -1.5

Kitazawa (YITP, Kyoto)

MK, Mogliacci, Kolbe, Horowitz, Phys. Rev. D99 (2019) 094507 Suenaga, MK, Phys. Rev. **D107** (2023) 074502 D. Fujii, A. Iwanaka, D. Suenaga, MK, arXiv:2404.07899

Boundary Conditions in QFT

Many motivations

Casimir effect

Relativistic heavy-ion collisions

- Numerical simulations (ex. lattice QCD)
- Matsubara formalism for thermal systems

 \overline{T}

Purpose

Thermal SU(3) YM with PBC along x direction

How does thermodynamics behave w.r.t. T and L_{χ} ? Thermal Casimir effect in a non-perturbative system OCD phase diagram as a function of L_{χ} Anisotropic pressure 2 Polyakov loops will play important roles

attractive force between two conductive plates

Brown, Maclay 1969

x z y

Brown, Maclay 1969

Brown, Maclay 1969

Contents

1. Lattice study MK+, Phys. Rev. **D99** (2019) 094507

2. Model analyses Suenaga, MK, Phys. Rev. D107 (2023) 074502 D. Fujii, A. Iwanaka, D. Suenaga, MK, arXiv:2404.07899

Contents

1. Lattice study

MK+, Phys. Rev. **D99** (2019) 094507

2. Model analyses

Suenaga, MK, Phys. Rev. **D107** (2023) 074502 D. Fujii, A. Iwanaka, D. Suenaga, MK, arXiv:2404.07899

Thermodynamics on the Lattice

Various Methods

□ Integral, differential, moving frame, non-equilibrium, ... □ rely on thermodynamic relations valid in V→∞ $P = \frac{T}{V} \ln Z$ $sT = \varepsilon + P$ Not applicable to anisotropic systems

DWe employ **Gradient Flow (SFtX) Method** $\varepsilon = \langle T_{00} \rangle$ $P = \langle T_{11} \rangle$ **Components of EMT are directly accessible!**

Thermodynamics

Systematic error: μ_0 or μ_d , Λ , t $\rightarrow 0$ function, fit range

Good agreement within 1% level
 Our method can deal with the pressure anisotropy

Numerical Setup

SU(3) YM theoryWilson gauge action

 $N_t = 16, 12$ $N_z/N_t = 6$ $2000 \sim 4000$ confs.
 Even N_x No Continuum extrap.

T/T_c	β	N_z	$N_{ au}$	N_x	$N_{\rm vac}$
1.12	6.418	72	12	12, 14, 16, 18	64
	6.631	96	16	16, 18, 20, 22, 24	96
1.40	6.582	72	12	12, 14, 16, 18	64
	6.800	96	16	16, 18, 20, 22, 24	128
1.68	6.719	72	12	12, 14, 16, 18, 24	64
	6.719	96	12	14, 18	64
	6.941	96	16	16, 18, 20, 22, 24	- 96
2.10	6.891	72	12	12, 14, 16, 18, 24	72
	7.117	96	16	16, 18, 20, 22, 24	128
2.69	7.086	72	12	12, 14, 16, 18	-
$\simeq 8.1$	8.0	72	12	12, 14, 16, 18	-
$\simeq 25$	9.0	72	12	12, 14, 16, 18	-

Same System volume

- 12X72²X12 ~ 16X96²X16
- 18x72²x12 ~ 24x96²x16

Simulations on OCTOPUS/Reedbush

Pressure Anisotropy (a) $T \neq 0$

Pressure Anisotropy (a) $T \neq 0$

MK, Mogliacci, Kolbe, Horowitz ('21)

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC

Lattice result
□ Periodic BC
□ Only t→0 limit
□ Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

Pressure Anisotropy (a) $T \neq 0$

MK, Mogliacci, Kolbe, Horowitz ('21)

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC

Lattice result
□ Periodic BC
□ Only t→0 limit
□ Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

Higher T

High-T limit: massless free gluons How does the anisotropy approach this limit?

Difficulties

□ Vacuum subtraction requires large-volume simulations. □ Lattice spacing not available $\rightarrow c_1(t)$, $c_2(t)$ are not determined.

Higher T

High-T limit: massless free gluons How does the anisotropy approach this limit?

Difficulties

□ Vacuum subtraction requires large-volume simulations. □ Lattice spacing not available $\rightarrow c_1(t)$, $c_2(t)$ are not determined.

We study

$$R = \frac{P_x + \delta}{P_z + \delta} \qquad \delta = -\frac{1}{4} \sum_{\mu} T_{\mu\mu}^{\mathrm{E}}$$

No vacuum subtr. nor Suzuki coeffs. necessary!

 $\frac{P_x + \delta}{P_z + \delta}$

 $T/T_c \simeq 8.1 \ (\beta = 8.0), \ T/T_c \simeq 25 \ (\beta = 9.0)$

Ratio approaches the asymptotic value for large T.
 But, large deviation exists even at T/T_c ~ 25.
 1st-order phase transition??

Contents

1. Lattice study MK+, Phys. Rev. **D99** (2019) 094507

2. Model analyses Suenaga, MK, Phys. Rev. **D107** (2023) 074502 D. Fujii, A. Iwanaka, D. Suenaga, MK, arXiv:2404.07899

Polyakov-loop Effective Models

Meisinger+, PRD (2003)

General Idea

Constant Polyakov loop *P* as dynamical variable

 $P = \operatorname{Tr} \left[\mathcal{P} \exp \left(i \int_{0}^{L_{\tau}} A_{\tau} d\tau \right) \right] \qquad \square P = 0 : \text{confinement}$ $\square P \neq 0 : \text{deconfinement}$

Free Energy

 $F(T;P) = F_{\text{pert.}}(T;P) + F_{\text{pot.}}(T;P)$

massless free gluons with constant $A_0(x)$ Phenomenological potential term

 $\langle P \rangle$ is determined to minimize F(T; P).

Thermodynamics

Meisinger+, PRD ('03)

Dumitru+, PRD ('12)

Qualitative behavior of lattice thermodynamics near and above T_c is well reproduced.

Extension to $T^2 \times R^2$

Suenaga, MK ('23); Fujii+ ('24)

2 Polyakov loops along au and x directions

$$P_{\tau} = \operatorname{Tr}\left[\mathcal{P}\exp\left(i\int_{0}^{L_{\tau}}A_{\tau}d\tau\right)\right] \qquad P_{x} = \operatorname{Tr}\left[\mathcal{P}\exp\left(i\int_{0}^{L_{\tau}}A_{x}d\tau\right)\right]$$

Free Energy

 Function of 2 Polyakov loops.
 Constructed under constraints in various limits and symmetries

Result

■ Lattice results for $T/T_c > 1.5$ are well reproduced. ■ No parameters to fit the results for $T/T_c = 1.4, 1.12$. ■ Appearance of discontinuity = 1st-order PT

Result

■ Lattice results for $T/T_c > 1.5$ are well reproduced. ■ No parameters to fit the results for $T/T_c = 1.4, 1.12$. ■ Appearance of discontinuity = 1st-order PT

Phase Diagram

2 first-order tranitions!
B: connected to deconf. tr. on S¹ × R³
A: new phase transition

Novel 1st-tr & CP induced by interplay between 2 Polyakov loops

Summary

Lattice thermodynamics in SU(3) YM on $T^2 \times R^2$ has 16 peculiar behaviors:

 $T/T_{c} = 2.10$

1.8

- Medium at 1.4<T/T_c<2.1 is remarkably insensitive to the boundary.</p>
- \Box Slow approach to the SB limit at small L_{τ} , L_{χ} .

Model analysis with two Polyakov loops explains the lattice results for $T \ge 1.5T_c$ qualitatively: Interplay b/w two Polyakov loops plays a crucial role. Appearance of new 1st-PT & CP is predicted.

Future

More lattice results to confirm the existence of the 1st PT
 Anti-periodic / Dirichlet BCs, BC for two directions, below T_c, ...

Numerical Results

Yang-Mills Gradient Flow

diffusion equation in 4-dim space
diffusion distance d ~ $\sqrt{8t}$ "continuous" cooling/smearing
No UV divergence at t>0

Constructing EMT

Suzuki, 2013

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$
vacuum subtr.

Remormalized EMT

$$T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[c_1(t) U_{\mu\nu}(t, x) + \delta_{\mu\nu} c_2(t) E(t, x)_{\text{subt.}} \right]$$

Perturbative coefficient: Suzuki (2013); Makino, Suzuki (2014); Harlander+ (2018); Iritani, MK, Suzuki, Takaura (2019)

Extrapolations $t \rightarrow 0$, $a \rightarrow 0$ $\langle T_{\mu\nu}(t)\rangle_{\text{latt}} = \langle T_{\mu\nu}(t)\rangle_{\text{phys}} + C_{\mu\nu}t + D_{\mu\nu}(t)\frac{a^2}{t}$ O(t) terms in SFTE lattice discretization FlowQCD2016 **This Study** 🖉 Small t extrapol. 🕂 个 Continuum strong strong discretization discretization effect effect

energy densty / transverse P

Energy Density

Transverse Pressure P_z

Two Special Cases with PBC $1/T \ll L_x = L_y = L_z$ $1/T = L_x, \ L_y = L_z$ $\frac{1}{T}$ L_y, L_z $\overline{L}_y, \ \underline{L}_z$ L_x $T_{11} = T_{22} = T_{33}$ $T_{44} = T_{11}, \ T_{22} = T_{33}$ In conformal ($\Sigma_{\mu}T_{\mu\mu}=0$) $\underline{p_1}$ - 1 $\frac{p_1}{-} = -1$ p_2 p_2

Perturbative Coefficients

Choice of the scale of g²

 $c_1(t) = c_1\left(g^2(\mu(t))\right)$

Previous: $\mu_d(t) = 1/\sqrt{8t}$ Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Small-t Extrapolation $T/T_c = 1.68$

•
$$P_x$$
, • P_z , $L_1T = 3/2$
• P_x , • P_z , $L_1T = 9/8$
• P_x , • P_z , $L_1T = 1$

Filled: N_t=16 / Open: N_t=12

Small-t extrapolation

- Solid: N_t=16, Range-1
- Dotted: N_t=16, Range-2,3
- Dashed: N_t=12, Range-1

Stable small-t extrapolation
 No N_t dependence within statistics for L_xT=1, 1.5

Small-t Extrapolation $T/T_c = 1.68$

•
$$P_x$$
, • P_z , $L_1T = 3/2$
• P_x , • P_z , $L_1T = 9/8$
• P_x , • P_z , $L_1T = 1$

Filled: N_t=16 / Open: N_t=12

Small-t extrapolation

- Solid: N_t=16, Range-1
- Dotted: N_t=16, Range-2,3
- Dashed: N_t=12, Range-1

□ Stable small-t extrapolation □ No N_t dependence within statistics for L_x T=1, 1.5