

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Anisotropic excited bottomonia from a basis of smeared operators

Ryan Bignell* G. Aarts, C. Allton, T. J. Burns, R. Horohan D'arcy, B. Jaeger, S. Kim, M. P. Lombardo, S. M. Ryan, J. I. Skullerud, A. Smecca

* School of Mathematics and Hamilton Mathematics Institute, Trinity College, Dublin

QCD at non-zero temperature Lattice 2024, the University of Liverpool 31st June 2024

Bottomonium spectrum

Bottomonium spectrum

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Ensemble Details

Generation 2L FASTSUM

N_T	128	64	56	48	40	36	32	28	24	20	16
Temperature (MeV)	47	95	109	127	152	169	190	217	253	304	380
# Wall Sources	16	16	16	20	24	24	32	28	24	20	16

Action details:

- Gauge: Symanzik-improved, tree-level tadpole
- Fermion: Wilson-clover, tree-level tadpole, stout-links
- Same parameters as HadSpec Collaboration
- Approx. 1000 configurations at each temperature
- $m_\pi\sim 236~{
 m MeV}, \xi\sim 3.5, T_c\sim 167~{
 m MeV}$

- NRQCD action for bottom quarks
 - Incorporating O(v⁴) corrections
 - Tree-level matching coefficients

Excited State spectroscopy

Generalised EigenValue Problem - GEVP

• Build correlation matrix of two point functions

$$G_{ij}(au) = \left\langle \Omega ig| {\mathcal O}_i {\mathcal O}_j^{\,\dagger} ig| \Omega
ight
angle = \sum_lpha \; rac{Z_i^lpha \, Z_j^{lpha \,\dagger}}{2 \, E_lpha} \, \mathrm{e}^{-E_lpha \, au}$$

• Solve generalised eigenvalue problems

$$G_{ij}(au_0+\delta_ au)\,u_j^lpha=\mathrm{e}^{-E_lpha\delta_ au}\,G_{ij}(au_0)\,u_j^lpha\ v_i^lpha\,G_{ij}(au_0+\delta_ au)=\mathrm{e}^{-E_lpha\delta_ au}\,v_i^lpha\,G_{ij}(au_0)$$

• Construct Projected Correlator

$$G_lpha(au) = v^lpha_i\,G_{ij}(au)\,u^lpha_j$$

Excited State spectroscopy

Generalised EigenValue Problem - GEVP

• Build correlation matrix of two point functions

$$G_{ij}(au) = \left\langle \Omega ig| {\mathcal O}_i {\mathcal O}_j^{\,\dagger} ig| \Omega
ight
angle = \sum_lpha \; rac{Z_i^lpha \, Z_j^{lpha \,\dagger}}{2 \, E_lpha} \, \mathrm{e}^{-E_lpha \, au}$$

• Solve generalised eigenvalue problems

$$G_{ij}(au_0+\delta_ au)\,u_j^lpha=\mathrm{e}^{-E_lpha\delta_ au}\,G_{ij}(au_0)\,u_j^lpha\ v_i^lpha\,G_{ij}(au_0+\delta_ au)=\mathrm{e}^{-E_lpha\delta_ au}\,v_i^lpha\,G_{ij}(au_0)$$

• Construct Projected Correlator

$$G_lpha(au) = v^lpha_i\,G_{ij}(au)\,u^lpha_j$$

GEVP - Operator Basis

Four widths of Gaussian and `excited` operator

- Related to overlap of each 'operator' with each state
- Examine eigenvectors to see how they change as temperature increases
- Plots have the largest contribution is normalised to one, and negative contributions are 'hashed'

Improved state isolation N_t = 36, $\chi_{b1}(1P)$

Spectral Representation

of NRQCD correlator

$$G(au) = \int_0^\infty \, rac{d\omega}{2 \, \pi} \, \mathrm{e}^{-\omega \, au} \,
ho(\omega)$$

Model spectral function $\rho(\omega)$ using a delta-function of the ground state.

Construct single ratio

$$r(au;T,T_0)=rac{G(au;T)}{G_{ ext{model}}(au;T,T_0)}$$

And hence double ratio

$$R(au;T,T_0)=rac{r(au;T,T_0)}{r(au;T_0,T_0)}$$

Describes the `change` in spectral function $\rho(\omega)$

Single & Double Ratio

- Single Ratio shows how similar to zero-temperature
 - Excited states still present
 - $\circ~$ Constant if $~\rho(\omega)$ is a delta-function
- Double Ratio
 - Removes excited state effect
 - Differences from one show difference in correlator

Double Ratio

Differences from one show difference in correlator

Mass Spectrum Results

Subtract zero-temperature $\Upsilon(1S)$

- Double Ratio informs trust in standard (multi-) exponential fits $\sum_i A_i e^{-E_i \tau}$
- Model averaging techniques used to give robust determination of energy.

Temperature (MeV)

Mass Spectrum Results

Subtract zero-temperature $\Upsilon(1S)$ or $\chi_{b1}(1P)$

- Double Ratio informs trust in standard (multi-) exponential fits $\sum_i A_i e^{-E_i \tau}$
- Model averaging techniques used to give robust determination of energy.

Temperature (MeV)

Mass Spectrum Results

Subtract zero-temperature $\Upsilon(1S)$ or $\chi_{b1}(1P)$

- Double Ratio informs trust in standard (multi-) exponential fits $\sum_i A_i e^{-E_i \tau}$
- Model averaging techniques used to give robust determination of energy.

Temperature (MeV)

`Time-Derivative Moments`

 $G(au) = \int_0^\infty \frac{d\omega}{2 \pi} \, \mathrm{e}^{-\omega \, au} \,
ho(\omega)$

If $\rho(\omega)$ is Gaussian with width Γ and mean E, second log-derivative is

$$egin{aligned} rac{d^2\,\log(G(au))}{d\, au^2} &= rac{G''(au)}{G(au)} - \left(rac{G'(au)}{G(au)}
ight)^2 \ &= rac{K^2}{K} + \Gamma^2 - (rac{K}{K})^2 \ &= \Gamma^2 \end{aligned}$$

This is the difference between 2nd and 1st non-central moments of a Gaussian

Model/Mock Correlator Data 1e-6 ${
m Gaussian}, \Gamma^2 = 3.61 imes 10^{-6}$ Delta, $\Gamma^2 = 0$ $^{-1}$ 10 20 30 $a_{\tau} \tau$

Point-Point

- Excited states shift form
- Fit with function

 $\Gamma^2 + \sum_{i=1}^N \, A_i \mathrm{e}^{-B_i \, au}$

- Easier at higher temperatures as Γ^2 becomes larger
- This is an upper bound only

GEVP

- Apply `moments` method to GEVP projected correlators
- GEVP essential for access to excited states for moments
- Method is fairly robust against noise
 - \circ Constant Γ^2 term helps
 - Exponential terms not well constrained
 - More statistics ongoing

Comparison

- Bayesian Reconstruction method
- Moments method for ground & excited states
- Encouraging similarity between methods
- Excited state is broader than ground state

Summary

- Presented results for the mass of Υ and χ_{b1} excited states using a basis of 'smeared' operators
 - At zero and finite temperature
- (Re-)introduced `moments` method to examine 'widths' of ground state (Gaussian) spectral functions
- Applied `moments` to GEVP projected correlators
- GEVP of smeared operators was successful in allowing use of the `moments` method for excited states
- Systematics of method not fully explored for this study (GEVP correlators)

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Additional Slides

