NRQCD Bottomonium at non-zero Temperature using Time-derivative Moments

Rachel Horohan D'arcy on behalf of the FASTSUM collaboration

Maynooth University, Department of Theoretical Physics

Lattice '24, University of Liverpool

くロン くぼう くほう くほう

э

Maynooth University, Department of Theoretical Physics

Motivation

- Heavy quarkonia states serve as probes for QGP as their masses are larger than other energy scales
- Heavy quarkonia states can be used as a thermometer for relativistic heavy-ion collisions
- NRQCD b-quark mass larger than other mass scales and can be approximated to a non-relativistic particle

くロン くぼう くほう くほう

э.

Introduction	Mass	Width	
○●○	000000	0000000	

Euclidean meson correlator is given by

$$G(\tau; T) = \int_{\omega_{\min}}^{\omega_{\max}} \frac{\mathrm{d}\omega}{2\pi} K(\tau, \omega) \rho(\omega; T) \,,$$

NRQCD correlator,

$$G(\tau; T) = \int_{\omega_{min}}^{\omega_{max}} \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} \rho(\omega; T)$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
○○●	000000	0000000	

Ensembles

Gen	N _f	ξ	<i>a₅</i> (fm)	$a_{ au}^{-1}(Gev)$	$m_{\pi}({ m MeV})$	Ns
2	2 + 1	3.45	0.121	5.63	390	24/32
2L	2 + 1	3.45	0.112	6.08	240	32
3	2 + 1	7	*0.11	*11.66	*390	32

Lattice parameters for FASTSUM ensembles Generation 2, 2L and 3.

くロン くぼう くほう くほう

3

 $T_c \sim 168 \text{ MeV}$ (Gen2L) $T_c \sim 180 \text{ MeV}$ (Gen3)

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	●00000	0000000	

To calculate the mass we approximate the spectral function to a Gaussian,

$$\rho(\omega; T) \propto \sum_{i=0}^{\infty} e^{-\frac{(\omega-m_i)^2}{2\Gamma_i^2}},$$

and then take the $\lim_{\Gamma^2 \to 0}$, so we have

$$\rho(\omega; T) \propto \sum_{i=0}^{\infty} \delta(\omega - m_i)$$

The correlator then becomes,

$$G(au; T) \propto \sum_{i=0}^{\infty} \int rac{\mathsf{d}\omega}{2\pi} e^{-\omega au} \delta(\omega - m_i)$$

イロン イ団 と イヨン イヨン

3

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	0●0000	0000000	

Taking the time derivative

$$rac{\partial {m {\cal G}}(au;{m T})}{\partial au} \propto \int -rac{{m {
m d}}\omega}{2\pi}\omega e^{-\omega au}\delta_{\omega,{m m}}$$

Divide by the correlator and evaluate the integral,

$$\frac{G'(\tau; T)}{G(\tau; T)} = \frac{\int -\frac{d\omega}{2\pi} \omega e^{-\omega\tau} \delta_{\omega,m}}{\int \frac{d\omega}{2\pi} e^{-\omega\tau} \delta_{\omega,m}}$$

$$\frac{G'(\tau;T)}{G(\tau;T)} = -m$$

We will use,

$$\frac{\partial(\log(G(\tau; T)))}{\partial \tau} = \frac{G'(\tau; T)}{G(\tau; T)}$$

We use a 4th order symmetric derivative.

イロト イロト イヨト イヨト

3

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	00●000	0000000	

$$\rho(\omega) \propto \sum_{i=0}^{\infty} e^{-\frac{(\omega-m_i)^2}{2\Gamma_i^2}}$$
$$G(\tau) = \sum_{i=0}^{\infty} A_i e^{-m_i \tau + \Gamma_i^2 \tau^2/2}$$
$$G(\tau) = A_0 e^{-m_0 \tau + \Gamma_0^2 \tau^2/2} \left(1 + \sum_{i=1}^{\infty} \frac{A_i}{A_0} e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}\right)$$
$$\frac{\partial \log(G(\tau))}{\partial \tau} = (-m_0 + \Gamma_0^2 \tau) + \sum_{i=1}^{\infty} \frac{A_i}{A_0} e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}$$

Maynooth University, Department of Theoretical Physics

Mass in the Υ channel for all temperatures.

Mass in the χ_{b_1} channel for all temperatures.

<ロト <回ト < 三ト < 三ト

æ

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	0000●0	000000	

- fit to $M + ae^{-b\tau}$ increase with
 - temperature in agreement with other methods
 - *M*(*T*₀) =
 9455(10)MeV,
 M_{exp} =
 9460MeV

() < </p>

æ

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	00000●	000000	

$$\chi_{b_1}$$
 - Mass

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	000000	●000000	

To calculate the thermal width, Γ , we approximate the spectral function to a Gaussian function, centered at the mass and with a width of Γ ,

$$ho(\omega) \propto e^{-rac{(\omega-m)^2}{2\Gamma^2}}$$

$$G(au; T) \propto \int rac{{
m d}\omega}{2\pi} e^{-\omega au} e^{-rac{(\omega-m)^2}{2\Gamma^2}}$$

イロン イヨン イヨン

3

Maynooth University, Department of Theoretical Physics

Introduction 000	Mass 000000	Width o●ooooo	

Since the spectral function $\rho(\omega)$ is a Gaussian then $\Gamma^2 = Var \langle \omega \rangle$.

$$\Gamma^2 = \left\langle \omega^2 \right\rangle - \left\langle \omega \right\rangle^2$$

We take a weighted average of ω and ω^2

$$\Gamma^{2} = \frac{\int \frac{\mathrm{d}\omega}{2\pi} \omega^{2} e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}}{\int \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}} - \left(\frac{\int \frac{\mathrm{d}\omega}{2\pi} \omega e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}}{\int \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}}\right)^{2}$$

and we can see that this is equal to,

$$\Gamma^2 = \frac{G''(\tau;T)}{G(\tau;T)} - \left(\frac{G'(\tau;T)}{G(\tau;T)}\right)^2$$

イロト イボト イヨト イヨト

э

Maynooth University, Department of Theoretical Physics

Introduction 000	Mass 000000	Width oo●oooo	

Since the spectral function $\rho(\omega)$ is a Gaussian then $\Gamma^2 = Var \langle \omega \rangle$.

$$\Gamma^2 = \left\langle \omega^2 \right\rangle - \left\langle \omega \right\rangle^2$$

We take a weighted average of ω and ω^2

$$\Gamma^{2} = \frac{\int \frac{\mathrm{d}\omega}{2\pi} \omega^{2} e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}}{\int \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}} - \left(\frac{\int \frac{\mathrm{d}\omega}{2\pi} \omega e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}}{\int \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} e^{-\frac{(\omega-m)^{2}}{2\Gamma^{2}}}}\right)^{2}$$

and we can see that this is equal to,

$$\Gamma^2 = \frac{G''(\tau; T)}{G(\tau; T)} - (M)^2$$

イロト イヨト イヨト

э

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	000000	ooo●ooo	

$$\frac{\partial^2(\log(G(\tau; T)))}{\partial \tau^2} = \frac{G''(\tau; T)G(\tau; T) - G'(\tau; T)^2}{G(\tau; T)^2}$$
$$= \frac{G''(\tau; T)}{G(\tau; T)} - \left(\frac{G'(\tau; T)}{G(\tau; T)}\right)^2$$

$$\frac{\partial \log(G(\tau))}{\partial \tau} = (-m_0 + \Gamma_0^2 \tau) + \sum_{i=1}^{\infty} \frac{A_i}{A_0} e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}$$
$$\frac{\partial^2 \log(G(\tau))}{\partial \tau^2} = (\Gamma_0^2) + \sum_{i=1}^{\infty} B_i e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}$$

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	000000	0000●00	

Width in the Υ channel for all temperatures.

Width in the χ_{b_1} channel for all temperatures.

<ロト <回ト < 三ト < 三ト

æ

Introduction	Mass	Width	
000	000000	○○○○○●○	

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	
000	000000	oooooo●	

 χ_{b_1} - Width

Maynooth University, Department of Theoretical Physics

Introduction	Mass	Width	Conclusions
000	000000	0000000	

Conclusions

Mass

- Increase in mass with increasing temperature, in agreement with other methods
- Particles with a larger width need further study

Width

 Increase in width with increasing temperature, in agreement with other methods

イロト 不得 トイヨト イヨト

э

Outlook

- Gen 3
- Mass of other particles with significant width

Introduction	Mass	Width	Conclusions
000	000000	0000000	

Gen 3 Tuning

 Zero temperature dispersion relations used to determine 1S spin average kinetic mass, M₂(1S).

 Tune the heavy quark mass by requiring M₂(1S) to equal its experimental value.

< ∃ >

Maynooth University, Department of Theoretical Physics