utline Motiv O Correlators and S

Thermal static potential 000000000

Conclusion and Outlook

Quarkonia spectral functions from (2+1)-flavor QCD using non-perturbative thermal potential

Sajid Ali

D. Bala, O. Kaczmarek (HotQCD collaboration)

Lattice 2024, Liverpool, 31.07.2024

Outline	
•	

lotivation

Correlators and SPFs

Thermal static potential 000000000

Conclusion and Outlook

Motivation

Correlators and SPFs Spectral function in NRQCD

Thermal static potential

Wilson line correlator and potential Color screening supported by the lattice data Description of the lattice data Consistency check with lattice correlator

Conclusion and Outlook

- Experimentally this QGP phase is recreated at RHIC and LHC in heavy ion collisions.
- QGP causes suppression of Quarkonia (bound states of heavy qq
 q
 q
), an important probe to study properties of QGP.

CMS Collaboration, PLB 790 (2019) 270

Conclusion and Outlook

Correlators and spectral functions

- Heavy $q\bar{q}$: a thermometer of QGP in heavy ion collisions
- The spectral functions $\rho_H(\omega)$ contains information about the in-medium hadron properties

$$\sum_{\vec{x}} \left\langle \bar{\psi} \Gamma_H \psi(\tau, \vec{x}) (\bar{\psi} \Gamma_H \psi(0, \vec{0}))^{\dagger} \right\rangle \equiv \frac{G_H(\tau)}{G_H(\tau)} = \int_0^{\infty} \frac{d\omega}{\pi} \rho_H(\omega) \frac{\cosh(\omega(\tau - \frac{1}{2T}))}{\sinh(\frac{\omega}{2T})}$$

Strategy:

- $G_H(\tau)$ on the lattice
- Extract spectral function
- Estimate in-medium hadronic properties
- In addition transport coefficients, like heavy quark diffusion coefficients, are encoded in the vector meson spectral function

Outline	Motivati
)	0

on C

Correlators and SPFs

Thermal static potential 000000000

Conclusion and Outlook

Spectral function in NRQCD

<u>a</u>

$$\rho_{PS}(\omega) \propto \lim_{r \to 0, r' \to 0} \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \, C_{>}(t; \vec{r}, \vec{r'})$$
$$C_{>}(t; \vec{r}, \vec{r'}) = \int d^3 \vec{x} \langle \bar{\psi}(t, x + \frac{\vec{r}}{2}) \gamma_5 \, U \, \psi(t, x - \frac{\vec{r}}{2}) \bar{\psi}(0, -\frac{\vec{r'}}{2}) \gamma_5 \, U \, \psi(0, -\frac{\vec{r'}}{2}) \rangle$$

In the presence of Interaction,

$$\left\{i\partial_t - \left[2M + V_T(r) - \frac{\nabla_{\vec{r}}^2}{M}\right]\right\} C_>(t;\vec{r},\vec{r'}) = 0$$

where V_T is defined in static limit,

$$V_{\mathcal{T}}(r) = i \lim_{t \to \infty} \frac{\partial \log W(r, t)}{\partial t} = V_{re}(r) - i V_{im}(r)$$

with
$$C_{>}(0; \vec{r}, \vec{r'}) = \delta^3(\vec{r} - \vec{r'})$$

M.Laine et al, JHEP 0703:054,2007

e Motivati O Correlators and SP

Thermal static potential

Conclusion and Outlook

Wilson line correlator

- Non-perturbative formulation,
 - A. Rothkopf et al., PRL. 108 (2012) 162001

$$\mathcal{N}(r,\tau) = \int_{-\infty}^{\infty} d\omega \rho(\omega,T) \exp(-\omega \tau)$$

$$\mathcal{N}(r,t) = \int_{-\infty}^{\infty} d\omega \rho(\omega,T) \exp(-i\omega t)$$

- $\rho(\omega, T)$ should have a form which is consistent with potential, $\lim_{t\to\infty} i \frac{\partial \log W(r,t)}{\partial t}$ should exist
- Gaussian spectral function doesn't have this limit (PRD 109, 074504)
- Simple Lorentzian has this limit but results depend on the lower cut-off (PRD 105, 054513)
- Bayesian analysis has a higher systematic error (PRL 114,082001)

Correlators and SPFs

Thermal static potential

Conclusion and Outlook

<□> < @> < E> < E> E の < ?/15</p>

Wilson line correlator and the potential

$$\log(W(r,\tau)) = -V_{re}(r)\tau - \int_{-\infty}^{\infty} du \,\sigma(r,u) \left[\exp(u\tau) + \exp(u(\beta-\tau))\right] + \dots$$

HTL like τ dependence.

•
$$\lim_{t\to\infty} i \frac{\partial \log W(r,t)}{\partial t} = \text{finite} \implies \lim_{u\to0} \sigma(r,u) \sim \frac{1}{u^2}$$

• Following HTL PT,
$$\sigma(r, u) = n_B(u) \left[\frac{V_{im}}{u} + c_1 u + c_3 u^3 + ... \right]$$

Parametrization

$$W(r, \tau) = A \exp[-V_{re}(r)\tau - rac{\beta V_{im}(r)}{\pi} \log(\sin(rac{\pi \tau}{\beta})) + ...]$$

D. Bala et al, PRD 101, 034507D. Bala et al, PRD 103, 014512D. Bala et al, PRD 105, 054513

Wilson line correlator and potential

- Measure Wilson line correlator at finite flow time (τ_F)
- Three parameters fit $(\chi^2/dof \sim 1)$ of Wilson line correlator for different distances.

u	tl	ir	ıe		

Color screening supported by the lattice data

β	<i>a</i> [fm]	m _l	Nσ	Nτ	T[MeV]
8.249	0.028	$m_s/5$	64	64	110.0
			96	32	220.0
			96	24	293.6

line Mot

Correlators a

Thermal static potential

Conclusion and Outlook

Functional form of the potential

$$V_{re}(r) = \frac{\sigma}{m_d}(1 - \exp(-m_d r)) - \frac{\alpha}{r}\exp(-m_d r) + c$$

$$V_{im}(r) = \begin{cases} \frac{1}{2}br^2 & \text{for } r < r_0 \\ a_0 - \frac{a_1}{2r^2} - \frac{a_2}{4r^4} & \text{for } r \ge r_0 \end{cases}$$

- Renormalon subtracted perturbative potential
- Non-perturbative thermal potential ≠ perturbative potential

otivation

orrelators and SPFs

Thermal static potential

Conclusion and Outlook

Matching of the thermal and vacuum parts

$$\rho_{PS}^{mod}(\omega) = A_0 \, \rho_{PS}^{T}(\omega) \, \theta(\omega_0 - \omega) + \rho_{PS}^{T=0}(\omega) \, \theta(\omega - \omega_0)$$

 $N_f = 2 + 1$ Sajid Ali et al, Few-Body Syst 64, 52 (2023) + (E) E $\Im \land \bigcirc _{11/15}$

Spectral functions

- (1S) state for bottom melts much after T_c ($T_c = 180 MeV$)
- Significant thermal effects on charmonium state
- Spectral function is not Gaussian around the peak

utline	Motiv
	0

orrelators and SPFs

Thermal static potential

Conclusion and Outlook

Consistency check with lattice correlator

$$G_{PS}^{E}(\tau) = \int_{0}^{\infty} \frac{d\omega}{\pi} \rho_{PS}(\omega) \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh[\frac{\omega}{2T}]}$$
 $m_{eff}(\tau_i) = \log\left(rac{G_{PS}^{E}(\tau_i)}{G_{PS}^{E}(\tau_{i+1})}
ight)$

◆□ ▶ ◆母 ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 13/15

orrelators and SPFs

made

Thermal static potential

Conclusion and Outlook

Consistency check with lattice correlator

$$\rho_{PS}^{mod}(\omega, A) = A\rho_{PS}(\omega)$$
$$G_{PS}^{E}(\tau, A) = \int_{0}^{\infty} \frac{d\omega}{\pi} \rho_{PS}^{mod}(\omega, A) \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh[\frac{\omega}{2T}]}$$

These spectral functions indeed describe the lattice correlator .

utline Motiva O Correlators and SPFs

Thermal static potential 000000000

Conclusion and Outlook

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 15/15

Conclusion and Outlook

- Lattice data supports color screening of the non-perturbative thermal potential
- We observed a small thermal mass shift for the in-medium $\eta_b(1S)$ and $\eta_c(1S)$ channels and a large thermal width $(\Gamma_c(1S) \gg \Gamma_b(1S))$

Conclusion and Outlook

Conclusion and Outlook

- Lattice data supports color screening of the non-perturbative thermal potential
- We observed a small thermal mass shift for the in-medium $\eta_b(1S)$ and $\eta_c(1S)$ channels and a large thermal width $(\Gamma_c(1S) \gg \Gamma_b(1S))$
- In contrast to Quenched QCD we see a bound state like structure of charmonium
- Study light quark mass effects by comparing $m_l = m_s/5$ and $m_l = m_s/27$
- Study cut-off effects and perform continuum extrapolation
- Estimate in-medium hadronic and transport properties (Kubo relation)

Thank you for your attention !

OutlineMotivationCorrelators and SPFsThermal static potentialooooooooooooooooooooooooooooooooooooo	Conclusion and Out
--	--------------------

< □ > < @ > < ≧ > < ≧ > ≧ のへで 16/15

Mo

Correlators and SI

Thermal static potential 000000000

Conclusion and Outlook

- Cornell fit of T = 0 lattice potential.
- Short distance matched renormalon subtracted peruturbative potential.

$$\begin{bmatrix} -\frac{\nabla^2}{M} + V(r) \end{bmatrix} \psi_n(r) = E_n \psi_n(r)$$
$$M^{1S} = 2M + E_0$$

- $M^b = 4.78 \text{ GeV}$
- $M^c = 1.35 \text{ GeV}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Motivation	Correlators and SPFs	Thermal static potential	
0	0	00	00000000	

Conclusion and Outlook

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ - りへで 18/15

Outline Motivation Correlators and SPFs Thermal static potential Conclusion o o oo oooooooooooooooooooooooooooooooooooo	ion and Outle 00
---	---------------------

< □ > < @ > < ≧ > < ≧ > ≧ の へ ↔ 19/15

Outline O	Motivation O	Correlators and SPFs 00	Thermal static potential	Conclusion and Outlook

• We performed skewed Lorentzian fit near the peak.

•
$$\Gamma_c(1S) \gg \Gamma_b(1S)$$

Outline	Motivation	Correlators and SPFs	Thermal static potential	Conclusion and Outlook
0	O	00		○00000●

Mass is identified with peak position of the spectral function.

(ロ) (個) (目) (目) (目) (の)()

Finite mass shift is observed