Pseudo-scalar meson spectral properties from spatial hadron correlators

${\sf Tristan} \ {\sf Ueding}^1$

with

Dibyendu Bala¹, Olaf Kaczmarek¹, Peter Lowdon² and Owe Philipsen²

¹Bielefeld University, ²Goethe-University Frankfurt am Main

August 2, 2024

DFG

Spectral representation of the temporal correlator:

$$\tilde{C}_{\Gamma}(\tau, \vec{p}) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \rho_{\Gamma}(\omega, \vec{p}) K(\omega, \tau)$$

$$\cosh\left[\omega(\frac{1}{2\pi} - \tau)\right]$$

with
$$K(\omega, \tau) = \frac{\cosh\left[\omega\left(\frac{1}{2T} - \tau\right)\right]}{\sinh\left(\frac{\omega}{2T}\right)}$$

Spectral function ρ_Γ (ω, p) contains all information about all possible spectral excitations.

Spectral representation of the temporal correlator:

$$\tilde{C}_{\Gamma}(\tau,\vec{p}) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \rho_{\Gamma}(\omega,\vec{p}) K(\omega,\tau)$$

with
$$K(\omega, \tau) = \frac{\cosh\left[\omega\left(\frac{1}{2T} - \tau\right)\right]}{\sinh\left(\frac{\omega}{2T}\right)}$$

- Spectral function ρ_Γ (ω, p) contains all information about all possible spectral excitations.
- ► To obtain $\rho_{\Gamma}(\omega, \vec{p})$ from $\tilde{C}_{\Gamma}(\tau, \vec{p})$ one has to solve an ill-posed problem.

Spectral representation of the temporal correlator:

$$\tilde{C}_{\Gamma}(\tau,\vec{p}) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \rho_{\Gamma}(\omega,\vec{p}) K(\omega,\tau)$$

with
$$K(\omega, \tau) = rac{\cosh\left[\omega\left(rac{1}{2T} - au
ight)
ight]}{\sinh\left(rac{\omega}{2T}
ight)}$$

- Spectral function ρ_Γ (ω, p) contains all information about all possible spectral excitations.
- ► To obtain $\rho_{\Gamma}(\omega, \vec{p})$ from $\tilde{C}_{\Gamma}(\tau, \vec{p})$ one has to solve an ill-posed problem.
- The temporal extent on the lattice is limited by the temperature $T = \frac{1}{aN_{\tau}}$.
- \Rightarrow Reconstruction of spectral function is difficult especially for small $N_{\tau}.$

Does there exist an alternative way to obtain spectral functions?

$$\begin{split} C_{\Gamma}\left(n_{z}\right) &= \frac{1}{N_{\sigma}^{2}N_{\tau}}\sum_{\tilde{\vec{n}}} \langle O_{\Gamma}\left(\tilde{\vec{n}}, n_{z}\right) \bar{O}_{\Gamma}\left(\tilde{\vec{0}}, 0\right) \rangle \\ &= \sum_{k=0} A_{k} e^{-M_{k}n_{z}} \end{split}$$

with
$$ilde{ec{n}} = ig(n_x, n_y, n_ auig)$$
 and $M_k < M_{k+1}.$

- ▶ Ground state is called screening mass M₀ = m₀^{scr} and is dominant at large distances.
- \Rightarrow The spatial extent is not limited by the temperature.

Spectral representation of the spatial correlator:

$$C_{\Gamma}(z) = \int_{-\infty}^{\infty} \frac{dp_z}{2\pi} e^{ip_z z} \int_0^{\infty} \frac{d\omega}{\pi\omega} \rho_{\Gamma}\left(\omega, p_x = p_y = 0, p_z\right)$$

• $C_{\Gamma}(z)$ and $\tilde{C}_{\Gamma}(\tau, \vec{p})$ share the same ρ_{Γ} .

Spectral function

► Using causality ([φ(x), φ(y)] = 0, for (x - y)² < 0) as constraint we can write a real scalar spectral function as [Bros and Buchholz 1992]:</p>

$$\rho(\omega, \vec{p}) = \int_0^\infty ds \int \frac{d^3 \vec{u}}{(2\pi)^2} \,\epsilon(\omega) \,\delta\Big(\omega^2 - (\vec{p} - \vec{u})^2 - s\Big) \,\widetilde{D}_T(\vec{u}, s)$$

- $\epsilon(\omega)$ is the sign function to ensure Lorentz-invariance.
- ▶ Thermal spectral density $\widetilde{D}_T(\vec{u}, s)$ contains all dynamical and temperature-dependent effects.
- Källén-Lehmann representation:

$$\widetilde{D}_T(\vec{u},s) \xrightarrow{T \to 0} (2\pi)^3 \delta^3(\vec{u}) \rho(s),$$

with zero temperature spectral density $\rho(s)$.

• Thermal medium may contain particle like excitations $D_{m,T}(\vec{x})$ named thermoparticles which are formed from the same discrete $\delta(s-m^2)$ component as mass m vacuum states

[J. Bros and D. Buchholz, Zeitschrift für Physik C 55, 509-513].

The contribution to the position-spaced thermal density is given by [J. Bros and D. Buchholz, Nucl. Phys. B 627, 289–310]

$$D_T(\vec{x}, s) = D_{m,T}(\vec{x}) \,\delta\left(s - m^2\right) + D_{c,T}(\vec{x}, s)$$

where $D_{c,T}(\vec{x},s)$ contains all other contributions.

• If $D_{c,T}(\vec{x},s)$ is negligible we find:

$$C\left(z\right) \approx \frac{1}{2} \int_{|z|}^{\infty} dR e^{-m^{scr}R} D_{m,T}\left(\left|\vec{x}\right| = R\right)$$

⇒ Determine $D_{m,T}(R)$ from large distance behaviour of spatial correlator according to:

$$D_{m,T}\left(\left|\vec{x}\right|=z\right)\sim-2e^{m^{scr}z}\frac{dC\left(z\right)}{dz}$$

Pseudo-scalar channel ($\Gamma = \gamma_5$)

$$C_{\gamma_5}\left(z\right) \approx \sum_{i=0}^{N} A_i e^{-m_i^{scr} z}$$

$$\Rightarrow D_{m_i,T}^{(i)}\left(\vec{x}\right) = \alpha_i e^{-\gamma_i |\vec{x}|}, \quad \alpha_i = 2A_i m_i^{scr}, \ \gamma_i = m_i^{scr} - m_i$$

$$\begin{split} \rho_{\rm PS}^{(i)}(\omega,\vec{p}) &= \epsilon(\omega)\theta(\omega^2 - m_i^2) \\ &\cdot \frac{4\,\alpha_i\gamma_i\sqrt{\omega^2 - m_i^2}}{(|\vec{p}|^2 + m_i^2 - \omega^2)^2 + 2(|\vec{p}|^2 - m_i^2 + \omega^2)\gamma_i^2 + \gamma_i^4} \\ &\rho_{\rm PS}(\omega,\vec{p}) = \sum_{i=0}^N \rho_{\rm PS}^{(i)}(\omega,\vec{p}) \end{split}$$

▶ With ρ_{PS} the spatial correlator C(z) becomes a pure exponential.

- 1. Extract screening mass and first exited state at zero and finite temperature.
- 2. Compute ρ_{PS} with screening masses.
- 3. Predict $\tilde{C}(n_{\tau})$ with ρ_{PS} .
- 4. Compare result with lattice data.

Table: HISQ configurations

β	N_F	$N_\sigma^3 \times N_\tau$	$m_{l,HISQ}$	$m_{s,HISQ}$	$T [{\rm MeV}]$	a [fm]	Conf. $\#$
7.010	2 + 1	$64^3 \times 64$	0.00132	0.0357	36.398	0.0847	227
		$64^3 \times 16$	0.00132	0.0357	145.591	0.0847	399
7.188	2 + 1	$64^3 \times 64$	0.00113	0.0306	43.072	0.0716	232
		$64^3 \times 16$	0.00113	0.0306	172.287	0.0716	395

Mixed action approach: Möbius domain wall fermions (MDWF) on (2+1) HISQ configurations

- Physical light and strange quark masses
- Analysis done for light-strange (K⁰) and strange-strange (η_{ss̄}) meson correlator.[D. Bala et al, JHEP 05, 332]
- Procedure was done for the light-light (π) meson correlator in [P. Lowdon and O. Philipsen, JHEP 10, 161].

Figure: Spectral function (left) and comparison between predicted and lattice correlator (right) below T_c [D. Bala et al, JHEP 05, 332].

- Prediction is consistent with lattice data above the dashed line.
- Below dashed line contributions of higher exited states are necessary.

Results

Figure: Spectral function (left) and comparison between predicted and lattice correlator (right) above T_c [D. Bala et al, JHEP 05, 332].

- Ground and exited state is significantly broadened.
- Prediction consistent with data for large τ and small values of momentum p.

What happens if we use a non thermoparticle spectral function? E.g. the Breit-Wigner spectral function

$$\rho_{\mathsf{BW}}(\omega, \vec{p}) = \frac{4\omega\Gamma}{(\omega^2 - |\vec{p}|^2 - m^2 - \Gamma^2)^2 + 4\omega^2\Gamma^2}$$

Gives rise to exponential spatial correlator contribution

$$C_{\rm BW}(z) = \frac{e^{-\sqrt{m^2 + \Gamma^2}|z|}}{2\sqrt{m^2 + \Gamma^2}}$$

Figure: Comparison between temporal correlator prediction using a BW-spectral function and the corresponding lattice correlator at 145.6 MeV[D. Bala et al, JHEP 05, 332].

• Prediction overshoots lattice data for large τ .

Conclusion and Outlook

Conclusion:

- We successfully used spatial hadron correlators to obtain pseudo-scalar spectral properties.
- The thermoparticle hypothesis provides a consistent description of how vacuum states undergo collisional broadening at finite temperature.

Outlook:

- ► Test thermoparticle hypothesis for charmonium and bottomonium.
- Extend approach to other meson channels.

Thank you for your attention !

Appendix

$$\begin{aligned} O_{\Gamma}\left(\vec{n},n_{\tau}\right) &= \bar{\psi}_{f_{1}}\left(\vec{n},n_{\tau}\right) \Gamma \psi_{f_{2}}\left(\vec{n},n_{\tau}\right) \\ \bar{O}_{\Gamma}\left(\vec{n},n_{\tau}\right) &= \bar{\psi}_{f_{2}}\left(\vec{n},n_{\tau}\right) \Gamma \psi_{f_{1}}\left(\vec{n},n_{\tau}\right) \end{aligned}$$

State	J^{PC}	Γ	Particles
Scalar	0^{++}	$\mathbb{1}$, γ_4	f_0, a_0, K_0^*, \ldots
Pseudo-scalar	0^{-+}	$\gamma_5 \;,\; \gamma_4\gamma_5$	π^\pm , π^0 , η , \dots
Vector	1	γ_i , $\gamma_4\gamma_i$	$ ho^\pm$, $ ho^0$, ω , \ldots
Axial Vector	1^{++}	$\gamma_i\gamma_5$	f_1 , a_1 ,

Table: [Gattringer and Lang 2010]

Temporal correlator:

$$\tilde{C}_{\Gamma}\left(n_{\tau},\vec{p}\right) = \frac{1}{N_{\sigma}^{3}} \sum_{\vec{n}} \exp\left(-i\vec{n}\cdot\vec{p}\right) \left\langle O_{\Gamma}\left(\vec{n},n_{\tau}\right)\bar{O}_{\Gamma}\left(\vec{0},0\right) \right\rangle$$

Correlator behaves as:

$$\tilde{C}_{\Gamma}\left(n_{\tau}\right) = \sum_{k=0} A_k e^{-E_k n_{\tau}}$$

with $E_k < E_{k+1}$.

 \Rightarrow Ground state mass $m_0 = E_0$ is dominant at large distances

Meson correlators

Spatial correlator:

$$C_{\Gamma}\left(n_{z},\tilde{\vec{p}}\right) = \frac{1}{N_{\sigma}^{2}N_{\tau}}\sum_{\tilde{\vec{n}}}\exp\left(-i\tilde{\vec{n}}\cdot\tilde{\vec{p}}\right)\langle O_{\Gamma}\left(\tilde{\vec{n}},n_{z}\right)\bar{O}_{\Gamma}\left(\tilde{\vec{0}},0\right)\rangle$$

with
$$ilde{n} = \left(n_x, n_y, n_ au
ight)$$
 and $ilde{p} = \left(p_x, p_y, p_ au
ight)$

Correlator behaves as:

$$C_{\Gamma}\left(n_{z}\right) = \sum_{k=0} A_{k} e^{-M_{k} n_{z}}$$

with $M_k < M_{k+1}$.

- \Rightarrow Ground state is called screening mass $M_0=m_0^{scr}$ and dominant at large distances.
- $(m_0^{scr})^{-1}$ describes a length at which the corresponding particle is effectively screened.

- 1. Compute $\tilde{C}(n_{\tau}, \vec{p})$
- 2. Fit meson correlator using

$$\tilde{C}_{\Gamma,lat}\left(n_{\tau}\right) = \sum_{k=0}^{N} A_{k} \left(e^{-E_{k}n_{\tau}} + e^{-E_{k}\left(N_{\tau}-n_{\tau}\right)}\right)$$
$$= \sum_{k=0}^{N} \tilde{A}_{k} \cosh\left(\frac{E_{k}}{2}\left(N_{\tau}-n_{\tau}\right)\right)$$

for several fit intervals $[n_{\tau,min}, N_{\tau}/2]$ considering different numbers of states N.

- 3. Select best fit parameters for each interval using e.g. the Akaike information criterion (AIC) or χ^2/dof .
- 4. Plot all masses and average over values inside plateau area.

• Analogous for
$$C\left(n_z, \tilde{\vec{p}}\right)$$

Ground state extraction

• Slope of temporal correlator \rightarrow meson mass

• Slope of spatial correlator \rightarrow screening mass

Figure: Spectral function (left) and comparison between predicted and lattice correlator (right) below T_c [D. Bala et al, JHEP 05, 332]

CRC-TR 21

BW vs. thermoparticle

Figure: Comparison between temporal correlator prediction using thermoparticle and BW-spectral function at $145.6 MeV \cite{D. Bala et al}$, JHEP 05, 332]