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Baryonic screening masses
▶ Interpolating operator with nucleon quantum numbers

N = ϵabc
(
uaTCγ5d

b
)
dc

▶ Screening correlator in the x3-direction

CN±(x3) =

∫
dx0dx1dx2 e

−ip0x0
〈
Tr

[
P±N(x)N(0)

]〉
with x3-parity projector P± = (1± γ3)/2 and fermionic Matsubara frequency
p0 = πT

▶ Screening mass characterizes its exponential decay

mN± = − lim
x3→∞

d

dx3
ln [CN±(x3)] mN± = 3πT in the free theory
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Motivation

▶ Theoretical interest
Very few studies: no continuum limit extrapolation for non-perturbative data and
perturbative result only qualitative [Hansson et al. (1994), Datta et al. (2012)]

▶ Inverse of spatial correlation lengths
They characterize the response of the plasma when a baryon with nucleon
quantum numbers is injected into the system [Detar et al. (1987)]

▶ Probes of chiral symmetry restoration
In a chirally symmetric regime the positive and negative parity screening masses
becomes degenerate
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Lattice setup

▶ 12 values of the temperature in the
range 1.167-164.6 GeV

▶ Nf = 3 O(a)-improved Wilson
fermions

▶ Shifted boundary conditions with
ξ = (1, 0, 0) [Giusti, Meyer (2011-13)]

▶ Lines of constant physics fixed with a
non-perturbative definition of the
running coupling [L.Giusti’s talk]

ḡ2(µ) T (GeV)

T0 - 164.6(5.6)
T1 1.11000 82.3(2.8)
T2 1.18446 51.4(1.7)
T3 1.26569 32.8(1.0)
T4 1.3627 20.63(63)
T5 1.4808 12.77(37)
T6 1.6173 8.03(22)
T7 1.7943 4.91(13)
T8 2.0120 3.040(78)
T9 2.7359 2.833(68)
T10 3.2029 1.821(39)
T11 3.8643 1.167(23)
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Lattice results

▶ Temperature dependence
parameterized with

1

ĝ2(T )
≡ 9

8π2
ln

2πT

ΛMS

+
4

9π2
ln

(
2 ln

2πT

ΛMS

)

▶ Accuracy in the continuum limit at the
permille level

▶ Chiral symmetry: positive and negative parity
masses are degenerate within statistical
precision

▶ Free theory value plus 4-8% positive deviation
due to interactions

▶ Data fitted with a polynomial in ĝ

▶ Single ∼ ĝ2 correction is not enough to
explain the temperature dependence down to
1 GeV
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ĝ2

1.00

1.02

1.04

1.06

1.08

1.10

m
N

+
/3
π
T

1 GeV2 GeV10 GeV80 GeV

7 / 19



Lattice results

▶ Accuracy in the continuum limit at
the permille level

▶ Chiral symmetry: positive and
negative parity masses are degenerate
within statistical precision

▶ Free theory value plus 4-8% positive
deviation due to interactions

▶ Data fitted with a polynomial in ĝ
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Three dimensional effective theory

▶ At high temperature QCD effectively behaves as a three dimesional effective
theory with action [Linde (1980), Laine et al. (2005)]

SEQCD =

∫
d3x

{
1

2
Tr [FijFij ] + Tr [(DjA0)(DjA0)] +m2

ETr
[
A2

0

]}
+ . . .

with Fij = i[Di, Dj ]/gE and Di = ∂i − igEAi

▶ Three dimensional gauge field Ai coupled to a massive scalar field A0

▶ Low energy constant m2
E and g2E matched to QCD at several orders in

perturbation theory. At leading order [Kapusta (1979), Laine and Schroder (2005)]

m2
E = g2T 2

(
1 +

Nf

6

)
, g2E = g2T
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Three dimensional non-relativistic QCD
▶ At high temperature quarks are heavy fields with mass ∼ πT . In the lowest

Matsubara sector the dynamics is described by [Huang et al. (1996)]

SNRQCD = i
∑

f=u,d,s

∫
d3x

{
χ̄f (x)

[
M − gEA0 +D3 −

∇2
⊥

2πT

]
χf (x)

−ϕ̄f (x)
[
M + gEA0 +D3 −

∇2
⊥

2πT

]
ϕf (x)

}
+O

(
g2E
πT

)

▶ χ and ϕ are three dimensional Weyl spinors related to the four dimensional
fermion field ψ by

ψf (x0, x) =
√
TeiπTx0

(
χf (x)
ϕf (x)

)
▶ Matching coefficient M computed at next-to-leading order in perturbation theory

[Laine et al. (2004)]

M = πT

(
1 +

g2

6π2

)
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Equations of motion
▶ From the NRQCD action it is straighforward to see that the propagator for the χ

field satisfies〈[
M + ∂3 −

∇2
⊥

2πT

]
Sχ(x)

〉
= gE ⟨[iA3(x) +A0(x)]Sχ(x)⟩ − i1δ(3)(x)

where Sχ(x) ≡ ⟨χ(x)χ̄(0)⟩f and similarly for ϕ

▶ In perturbation theory, at next-to-leading order in gE we write

Sχ(r, x3) = S(0)
χ (r, x3) + gES

(1)
χ (r, x3) +O(g2E) , r = (x1, x2)

where

S(0)
χ (r, x3) = −iθ(x3)1

∫
d2p

(2π)2
eip·re

−x2

(
M+ p2

2πT

)

S(1)
χ (r, x3) ≃

∫ x3

0

dz3 [iA3 +A0]

(
z3
x3

r, z3

)
S(0)
χ (r, x3)
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Baryonic correlators in the effective theory

▶ Nucleon interpolating operator in the effective theory, by displacing the
fundamental fields in the transverse directions

N(r1, r2, r3;x3) → ϵabc
[
χaT
u (r1, x3)σ2ϕ

b
d(r2, x3) + ϕaTu (r1, x3)σ2χ

b
d(r2, x3)

]
χc
d(r3, x3)

▶ The corresponding two-point correlation function

CN±(r1, r2, r3;x3) ≡
1

T
Tr

〈
N(r1, r2, r3;x3)N(0)P±

〉
= ∓T 2 ⟨2W (r1, r2, r3;x3) + 3W (r2, r1, r3;x3)⟩

where the Wick contraction is

W (r1, r2, r3;x3) ≡ −iϵabcϵgfeSag
χ (r1, x3)S

bf
ϕ (r2, x3)S

ce
χ (r3, x3)

▶ CN± is a sum of two Wick contractions which propagate independently

12 / 19



Equation of motion for baryonic correlators
Combine

▶ Equations of motion for the fundamental fields propagators Sχ(r, x3) and
Sϕ(r, x3) at next-to-leading order

▶ Large x3 limit to extract the screening mass

To obtain the equation of motion for W . It reads at O(g2E)[
∂3 −

3∑
i=1

∇2
ri

2πT
+ V (r1, r2, r3)

]
⟨W (r1, r2, r3;x3)⟩ = 0

which is a Schrödinger equation with potential

V (r1, r2, r3) = 3M +
1

2

[
V −(r12) + V +(r13) + V −(r23)

]
, rij = |ri − rj |

and V ±(r) defined as [Brandt et al. (2014)]

V ±(r) ≡ 4

3

g2E
2π

[
ln
(mEr

2

)
+ γE ±K0(mEr)

]
13 / 19



Schrödinger equation

▶ The equation of motion for a two-point correlation function with nucleon
interpolating operators implies the two dimensional eigenvalue problem[

−∇r1 +∇r2 +∇r3

2πT
+ V (r1, r2, r3)

]
ψ(r1, r2, r3) = E ψ(r1, r2, r3)

▶ The baryonic screening mass is the energy eigenvalue corresponding to the ground
state, i.e. mN± = min(E)

▶ Numerical solution found with

➥ Two-dimensional hyperspherical harmonics method
➥ Finite difference method

Both providing

E = 3πT
[
1 + 0.046g2 +O(g3)

]
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Comparison with the lattice

▶ Down to T ∼ 5 GeV the difference
between the perturbative expression
and the non-perturbative data is
within half a percent

▶ However a fast convergence of the
perturbative series cannot be assumed,
since the single ĝ2 correction cannot
parameterize the negative curvature of
the lattice data
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Final parameterization

▶ mN± parameterized with a quartic
polynomial in ĝ

mN±

3πT
= b0 + b2ĝ

2 + b3ĝ
3 + b4ĝ

4

▶ b0 and b2 compatible with the
tree-level and next-to-leading order
analytical values

▶ b3 and b4 with opposite signs and
comparable in magnitude

▶ Other possible parameterizations lead
to disagreement between b2 and the
next-to-leading prediction

b3 0.024(4)

b4 −0.021(3)
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Conclusions & outlook

▶ We carried out the first detailed investigation of the baryonic screening masses
with nucleon quantum numbers in the high temperature regime of QCD both on
the lattice and in the effective theory

▶ If one assumes the perturbative series to be convergent the Coulomb interaction
accounts for ∼ 90% of the difference between the non-perturbative data and the
free theory value 3πT down to T ∼ 5 GeV

▶ However a single O(g2) correction is not sufficient to explain the temperature
dependence of the non-perturbative data down to T ∼ 1 GeV

▶ The study of spin-3/2 baryonic screening masses on the lattice is currently in
progress
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