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Baryonic screening masses

P Interpolating operator with nucleon quantum numbers

N = 6abc (uaTC")/5db) de

» Screening correlator in the z3-direction
CNi (563) = /d.%'(]dl‘ﬂi.%z e—ipoazo <T1“ [PiN(x)N(O)]>

with x3-parity projector Py = (1 £ ~3)/2 and fermionic Matsubara frequency
po=nT
» Screening mass characterizes its exponential decay

my+ = — lim iln [Cn+(x3)] mpy+ = 37T in the free theory
Tr3—r00 3;‘3
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Motivation

» Theoretical interest
Very few studies: no continuum limit extrapolation for non-perturbative data and
pel’turbative I’eSU|t Only qualltat|ve [Hansson et al. (1994), Datta et al. (2012)]

4/19



Motivation

» Theoretical interest
Very few studies: no continuum limit extrapolation for non-perturbative data and
pel’turbative I’eSU|t Only qualltat|ve [Hansson et al. (1994), Datta et al. (2012)]

> Inverse of spatial correlation lengths
They characterize the response of the plasma when a baryon with nucleon
quantum numbers is injected into the system [Detar et al. (1987)]

4/19



Motivation

» Theoretical interest
Very few studies: no continuum limit extrapolation for non-perturbative data and
pel’turbative I’eSU|t Only qualltat|ve [Hansson et al. (1994), Datta et al. (2012)]

> Inverse of spatial correlation lengths
They characterize the response of the plasma when a baryon with nucleon
quantum numbers is injected into the system [Detar et al. (1987)]

> Probes of chiral symmetry restoration
In a chirally symmetric regime the positive and negative parity screening masses
becomes degenerate
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© Non-perturbative results
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Lattice setup

» 12 values of the temperature in the
range 1.167-164.6 GeV

» Ny =3 O(a)-improved Wilson

fermions
» Shifted boundary conditions with
E == (17 O, O) [Giusti, Meyer (2011-13)]

» Lines of constant physics fixed with a
non-perturbative definition of the
running coupling [L.Giusti's talk]

9°(n) | T (Gev)
To - 164.6(5.6)
Ty | 1.11000 | 82.3(2.8)
T, | 1.18446 | 51.4(1.7)
Ty | 1.26569 | 32.8(1.0)
T, | 1.3627 | 20.63(63)
T | 1.4808 | 12.77(37)
Ty | 1.6173 | 8.03(22)
T; | 1.7943 | 4.91(13)
Ty | 2.0120 | 3.040(78)
Ty | 2.7359 | 2.833(68)
Tyo | 3.2029 | 1.821(39)
Ty | 3.8643 | 1.167(23)
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Lattice results

» Temperature dependence
parameterized with
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Lattice results

» Accuracy in the continuum limit
the permille level
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Lattice results

» Accuracy in the continuum limit at
the permille level
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Lattice results

» Accuracy in the continuum limit at
the permille level

110

» Chiral symmetry: positive and | f

negative parity masses are degenerate {4 *
within statistical precision 106 4

my+ /37T
-

» Free theory value plus 4-8% positive
deviation due to interactions
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Lattice results

» Accuracy in the continuum limit at
the permille level

» Chiral symmetry: positive and
negative parity masses are degenerate
within statistical precision

» Free theory value plus 4-8% positive
deviation due to interactions

» Data fitted with a polynomial in ¢
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Lattice results

» Accuracy in the continuum limit at
the permille level

» Chiral symmetry: positive and
negative parity masses are degenerate
within statistical precision

» Free theory value plus 4-8% positive
deviation due to interactions

» Data fitted with a polynomial in ¢

» Single ~ §% correction is not enough
to explain the temperature
dependence down to 1 GeV
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© Effective theory calculation
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Three dimensional effective theory

» At high temperature QCD effectively behaves as a three dimesional effective
theory with action [Linde (1980), Laine et al. (2005)]

1
SEQCD _ /d3$ {2 Tr [Fisz'j] + Tr [(DjAo)(DjAo)] + m% Tr [A%] } + ...

with Fij = i[Di, Dj}/gE and D; = 0; — igEAi
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Three dimensional effective theory

» At high temperature QCD effectively behaves as a three dimesional effective

theory with action [Linde (1980), Laine et al. (2005)]

1
SEQCD _ /d3$ {2 Tr [Fisz‘j] + Tr [(DjAo)(DjAo)] + m% Tr [A%] } + ...

with Fij = i[Di, Dj}/gE and D; = 0; — igpA;
» Three dimensional gauge field A; coupled to a massive scalar field Ay

> Low energy constant m% and g4 matched to QCD at several orders in

perturbation theory. At leading order [Kapusta (1979), Laine and Schroder (2005)]

N
mg = g°T? (1 + f) . g =9gT
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Three dimensional non-relativistic QCD
> At high temperature quarks are heavy fields with mass ~ 77. In the lowest

Matsubara sector the dynamics is described by [Huang et al. (1996)]
) _ v?
SNRQCD = %f_zu:ds/dgx{x)f(@") {M —gsdo+ D3 — %LT} Xy (z)
@) [ M+ ge + D — o] 500+ 0 (£
! orT | 7 7T
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Three dimensional non-relativistic QCD

> At high temperature quarks are heavy fields with mass ~ 77. In the lowest
Matsubara sector the dynamics is described by [Huang et al. (1996)]

. \%1
SNRQCD = 1 /d3 {Xf {M geAo + D3 — ”} x¢(x)
f=u,d,s

—¢y(x) |:M+9EA0 + D3 — V] o5 )} o (ié)

»  and ¢ are three dimensional Weyl spinors related to the four dimensional
fermion field v by

ylana) = VTt (M)
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Three dimensional non-relativistic QCD
> At high temperature quarks are heavy fields with mass ~ 77. In the lowest

Matsubara sector the dynamics is described by [Huang et al. (1996)]
V2
_ 3..) < 1
SNRQCD—sz:d /d x{xf(x) |:M—gEA0+D3— 2’7TT:| xr(x)
=u,a,s

- Vi 95
o () {M + gpAo + D3 — M] ¢f($)} +0 (WT)

»  and ¢ are three dimensional Weyl spinors related to the four dimensional
fermion field v by

ylana) = VTt (M)

> Matching coefficient M computed at next-to-leading order in perturbation theory

[Laine et al. (2004)]
g2
M=xT (14—
T ( + 671'2)
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Equations of motion

» From the NRQCD action it is straighforward to see that the propagator for the x
field satisfies

(Jar+00- o] 5001} = gm (6a0) + )] () — 250

where Sy (z) = (x(x)x(0)); and similarly for ¢
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Equations of motion

» From the NRQCD action it is straighforward to see that the propagator for the x
field satisfies

(Jar+00- o] 5001} = gm (6a0) + )] () — 250

where Sy (z) = (x(x)x(0)); and similarly for ¢
P In perturbation theory, at next-to-leading order in g5 we write

Sy(r,z3) = SO (r,23) + geSP(r,23) + O(g}),  r = (x1,22)
where

d2p ; —xo( M p%
0 . ipr,—%2( M+5op
,5')(( )(r,x3) = —10(1'3)1/ (271_)2@ pry ( )

S)(Cl)(r,xg,) :/0 dzs [1As + Ao] <3r Zg) S(O) (r,x3)
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Baryonic correlators in the effective theory

» Nucleon interpolating operator in the effective theory, by displacing the
fundamental fields in the transverse directions

N(ri,r2,13523) = €[4T (11, 23) 020} (r2, 23) + ¢34T (r1, m3)o2x (2, m3)] X§(rs, 23)
» The corresponding two-point correlation function
1 —
Cy+(ry,ro,r3;23) = T Tr <N(r1, ro,Tr3; I’g)N(O)Pi>
= FT° (2W (r1, 12,135 13) + 3W (12,11, T35 73))
where the Wick contraction is
W(I‘l, ro,I3; .%'3) = _ieabcegfeszg(rh 56'3)ng (1‘2, {Eg)S;e (1'3, £E3)

» Cy=+ is a sum of two Wick contractions which propagate independently
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Equation of motion for baryonic correlators
Combine
» Equations of motion for the fundamental fields propagators S, (r, z3) and
Se(r,x3) at next-to-leading order
P> Large x3 limit to extract the screening mass
To obtain the equation of motion for W. It reads at O(g3)

3 o2
Vi
[83 - Z 2wi“ + V(r1,1‘2,1‘3)] (W(ry,r2,T3523)) = 0

i=1

which is a Schrodinger equation with potential

1
V(I’l, 1‘271‘3) =3M + 5 [V_(T12> + V+(T13) + V- (7"23)] 5 Tij = |I‘Z' — I'J|

and Vi(r) defined as [Brandt et al. (2014)]

Vi(r) = %% {ln (?) + g + Ko(mEr)}
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Schrodinger equation

» The equation of motion for a two-point correlation function with nucleon
interpolating operators implies the two dimensional eigenvalue problem

Vi, + Vi, + Vi,

5T + V(ry,ra,r3) | ¥(ry,r2,13) = E)(r1,12,13)

» The baryonic screening mass is the energy eigenvalue corresponding to the ground
state, i.e. my+ = min(F)
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Schrodinger equation

» The equation of motion for a two-point correlation function with nucleon
interpolating operators implies the two dimensional eigenvalue problem

_Vrl + Vi, + Vi,
2nT

+ V(ry,r2,13) | ¢(r1,r9,13) = E1p(r1,12,13)

» The baryonic screening mass is the energy eigenvalue corresponding to the ground
state, i.e. my+ = min(F)
» Numerical solution found with

= Two-dimensional hyperspherical harmonics method
= Finite difference method

Both providing

E = 37T [1+0.046g° + O(g*)]
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@ Comparison with the lattice
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Comparison with the lattice
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Comparison with the lattice

» Down to T~ 5 GeV the difference

between the perturbative expression T nr oo 4
and the non-perturbative data is 1081 4 “4 .
within half a percent A
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Comparison with the lattice

» Down to 7'~ 5 GeV the difference .
between the perturbative expression oo +
and the non-perturbative data is 1081

within half a percent _ V,M/
1.06 4 *t,f/

» However a fast convergence of the
perturbative series cannot be assumed,
since the single §2 correction cannot
parameterize the negative curvature of

H o047 80 GeV_ 10 GeV 2 GeV 1GeV
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Final parameterization

» my+ parameterized with a quartic
polynomial in g

my+

3nT

= by + ba§? + b3§> + bag?

n+/37T

N
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Final parameterization

» my+ parameterized with a quartic
polynomial in g

my+

= b + bod? + b39° + byt
3T 0 + 029" + 03G9~ + 049

» by and b compatible with the
tree-level and next-to-leading order
analytical values
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Final parameterization

» my+ parameterized with a quartic
polynomial in g bs | 0.024(4)
by | —0.021(3)

my+ ~ ~ ~
= bo + b2g” + b3g® + bag*
37T
i . 1.10 —
» by and b compatible with the T PT=14 0t !
. — PT +0.0265* — 0.021¢* ,,/
tree-level and next-to-leading order 1051 4 Duta .
analytical values
1.06 4
» b3 and by with opposite signs and g
comparable in magnitude 1
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Final parameterization

» my+ parameterized with a quartic

polynomial in g bs | 0.024(4)
by | —0.021(3)
m ~ ~ ~
NT = bo + b292 + b393 + b4g4
37T
» by and b compatible with the --m PT =14 0.0468° +
. — PT +0.0265* — 0.021¢* ,//
tree-level and next-to-leading order 1051 4 Duta L :

analytical values

1.06 4

» b3 and by with opposite signs and
comparable in magnitude

1.04 4

my+ /37T

» Other possible parameterizations lead 12
to disagreement between by and the
. .. 1.004 80 GeV 10 GeV 2 GeV 1 GeV
next-to-leading prediction NG\ NN\
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© Conclusions & outlook
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Conclusions & outlook

> We carried out the first detailed investigation of the baryonic screening masses
with nucleon quantum numbers in the high temperature regime of QCD both on
the lattice and in the effective theory

> If one assumes the perturbative series to be convergent the Coulomb interaction
accounts for ~ 90% of the difference between the non-perturbative data and the
free theory value 377" down to T' ~ 5 GeV

» However a single O(g?) correction is not sufficient to explain the temperature
dependence of the non-perturbative data down to 7' ~ 1 GeV

» The study of spin-3/2 baryonic screening masses on the lattice is currently in
progress
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