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l Nf=2+1, 2 fine lattice DWF simulation and reweighting to overlap  [PRD(2021), PTEP(2022)]
- Profound relation among: chiral symmetry, axial anomaly and topological susceptibility

l R & D for the Nf=2+1 thermodynamics with Line of Constant Physics (LCP) 
- Codes: Grid, Hadrons, Bridge++
- LCP / Reweighting
- Chiral order parameter and renormalization
- Quark number susceptibility

l Nf=2+1    - thermodynamics with LCP (mass = ms/10 = about 3 x physical ud quark mass)
- 2 step renormalization for chiral condensate (power and log divergence) with an 𝑥𝑚!"# correction
- 2 lattice spacings Nt=12, 16
- 3 volumes Ns/Nt=2, 3, 4
- No phase transition !
- Tpc determined 𝑇$% = 165(2) MeV
- PPR-Fugaku FY2020-2022
- [PoS Lattice 2021, 2022] 

l Physical point study
- PPR-Fugaku 2023- preliminary results →

QCD phase transition near and on the physical point
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Modes of Simulations
to locate phase transition
• tune parameters near transition
Ø T: fixed, change m
Ø m: fixed, change T 

T Symm

⑨

Symm

0 m

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7
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Modes of Simulations
to locate phase transition
• tune parameters near transition
Ø T: fixed, change m
Ø m: fixed, change T 

Fixing / changing the controlling parameter
• 𝑇: controled by

• 𝑎(β) : controlled by β
• 𝑁! : discrete

• 𝑚: controlled by
• input quark mass
• 𝑚 β ← matching with hadronic scale: 𝑀#(β,𝑚)
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Nf=2: Ward Thu. morning
Nf=3: Zhang Tue. morning



For the Line of Constant Physics: 𝒂𝒎𝒔(𝜷) with 𝒂(𝜷)
• Step 1: determine 𝒂(𝜷) [fm] with 𝑡" (BMW) input

• at 𝛽 = 𝟒. 𝟎, 4.1∗, 4.17, 4.35, 4.47
* 𝛽=4.0 new data (previous step5), to add support at small β

• Step 2: determine 𝑍$(𝛽) using NPR results     
• at 𝛽 = 4.17, 4.35, 4.47
• And use 𝑍$(𝛽) so obtained for 𝛽 ≥ 4.0 : 𝛽 < 4.17 region is extrapolation 
• 1/𝑍$ 𝛽 will be used to renormalize scalar operator, chiral condensate 

• Step 3: solve 𝒂𝒎𝒔(𝜷) with input (quark mass input): 
• 𝑚%

& = 𝑍$ ⋅ 𝑎𝑚%
'())⋅ 𝑎*+ = 92 MeV

• $!
$"#

= 27.4 (See for example FLAG 2019)

• See for details in Lattice 2021 proc by S.Aoki et al.
Do simulation
• Step 4: proper tuning of input mass: correct mres
Do simulation 2nd round / correction with reweighting + valence meas.
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Features
• Fine lattice: use of existing results (0.04 ≤ 𝑎 ≤ 0.08 fm)

• Granted preciseness towards continuum limit
• Coarse lattice parametrization is an extrapolation

• Preciseness might be deteriorated
• Newly computing 𝑍! e.g. at 𝛽 = 4.0	(lower edge) might improve, but not done so far

• NPR of 𝑍$ at 𝑎*+ ≃1.4 GeV may have sizable error (window problem) anyway
• Smooth connection from fine to coarse should not alter leading 𝑂 𝑎=

• Difference should be higher order
• Error estimated from Kaon mass

• Δ𝑚" ~ 10 % at 𝛽 = 4.0	 (𝑎 ≃ 0.14 fm)  → Δ𝑚" ~ a few %
• Δ𝑚" ~ a few % at 𝛽 = 4.17	(𝑎 ≃ 0.08 fm)

4 4.1 4.2 4.3 4.4 4.5

β

0

0.02

0.04

0.06

0.08

m
s

la
tt

LCP remarks for FT2023-



• Möbius DWF → OVF by reweighting
• Successful (w/ error growth) at 𝛽 = 4.17 (𝑎 ≃ 0.08 fm)

• See Lattice 2021 JLQCD (presenter: K.Suzuki)
• Questionable for

• Coarser lattice: rough gauge, DWF chiral symmetry breaking
• Finer lattice:     larger V (# sites)

• Chiral fermion with continuum limit
• A practical choice is to stick on DWF

• Controlling chiral symmetry breaking with DWF
• WTI residual mass 𝑚,-%: 𝑚.

/ ∝ 𝑚0 +𝑚,-% (1 + ℎ. 𝑜. )
• Understanding  𝑚,-% 𝛽 with fixed 𝐿% (5-th dim size)

• 𝑚+,-[𝑀𝑒𝑉] ∼ 𝑎.,  where 𝑋 ∼ 5
• Vanishes quickly as 𝑎 → 0
• 1st (dumb) approximation: forget about 𝑚,-%

• Better : 𝑚0123) ↔ 𝑚0 +𝑚,-% but, this is not always enough
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Simulation plan: 2nd round
w/ treatment of 𝑚!"# effect

• T2-(c)
• 𝑁E = 16
• 𝑚F = 0.1𝑚G
• 𝑚HIG shift by reweighting
• 𝑉G = 32J

• T1-(q)
• 𝑁E = 16
• 𝑚F = 𝑚KL

• 𝑚M
NOPKE = 𝑚M

QRS −𝑚HIG
• 𝑉G = 48J

• T1-(d)
• 𝑁E = 12
• 𝑚F = 0.1𝑚G

• 𝑚M
NOPKE = 𝑚M

QRS −𝑚HIG
• 𝑉G = 24J, 36J

𝐿- = 12 fixed throughout this study
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Light quark Σ = − 𝜓𝜓 :
conventional and residual power divergence

• Σ|./0~𝐶.
1# 231$%&

4'
+ Σ|5678. +⋯ S. Sharpe (arXiv: 0706.0218)

• 𝑚:;- ≠ 𝑥𝑚:;-;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It 

can be studied and reduced only by increasing 𝐿- - a very expensive proposition.” 
‒ S. Sharpe.

• Σ|./0 → 𝐶.
31$%&
4' + Σ|5678. + ⋯ ;	(𝑚< → 0)

• Σ|./0 → 𝐶.
=(>=3)1$%&

4' + Σ|5678. + ⋯ ;	(𝑚< → −𝑚:;-)
“Forget about 𝑚$%"”     
is dumber for Σ, but… 
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Light quark Σ = − 𝜓𝜓 :
no power div. in disconnected susceptibility

• χ-./0 = 𝑢𝑢・𝑑𝑑 − 𝑢𝑢 𝑑𝑑
• power divergence in 𝜓𝜓 cancels out
• no new divergence over Σ because no new contact terms
• needs multiplicative renormalization for logarithmic divergence
• 𝑍?(β) = 1/𝑍1(β)
• we stick for now on this quantity

• χ12134= 𝜓𝜓・𝜓𝜓 − 𝜓𝜓 𝜓𝜓
• has power divergence everywhere
• needs to understand the power divergence of Σ = − 𝜓𝜓 first



Disconnected chiral susceptibility at average 
physical u and d quark mass

𝑚/ = 𝑚-/10
• d1,d2,d3 : 𝑁) = 12, LT=2,3,4

• c1           : 𝑁) = 16, LT=2

• good scaling 𝑁) = 12 -16 observed for LT=2

𝑚& = 𝑚'(

• p2,p3: Nt=12, aspect ratio LT = 3, 4
• Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU

• LT=4 very preliminary, currently running to get to planned satat.

• 𝑻𝒑𝒄 = 𝟏𝟓𝟏 𝟑 MeV (preliminary) on 𝟑𝟔𝟑×𝟏𝟐, compared with
• 𝑻𝒑𝒄 = 𝟏𝟓𝟓 𝟏 𝟖 w/ DWF (Nt=8) by HotQCD (2014)

• 𝑻𝒑𝒄 = 𝟏𝟓𝟔. 𝟓 𝟏. 𝟓 w/ HISQ by HotQCD (2019)

• 𝑻𝒑𝒄 = 𝟏𝟓𝟖. 𝟎 𝟎. 𝟔 w/ stout staggered by Budapest-Wuppertal (2020)
Likely NO phase transition at physical point
with chiral fermions.
No surprise happened so far..



Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|TUV~

W, XYW-./

Z0
+ Σ|[\OE. +⋯ S. Sharpe (arXiv: 0706.0218)

𝑚()* ≠ 𝑥𝑚()*;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It can be studied and 

reduced only by increasing 𝐿% - a very expensive proposition.” ‒ S. Sharpe.

• We propose another way to estimate 𝑥𝑚HIG using 𝑚′HIG
If chiral symmetry is restored → Σ|+,-.. = 0

→ 𝑚0 = −𝒙𝒎𝒓𝒆𝒔 is a zero of Σ|456 which is related with

𝑚′()* =
∑( ⟨9)* : ;(=)⟩
∑( ;(: ;(=)⟩

(↔ 𝑚()*=
∑( ⟨9)* :⃗,. ;(=)⟩
∑( ⟨; :⃗,. ;(=)⟩

→ ⟨= 9)* B⟩
⟨=|;|B⟩

(large 𝑡) )

𝑚0 = −𝑚()*′ is a zero of Σ|456 (↔ 𝑚0 = −𝑚()* is a zero of , 𝑚B
D )

Due to Axial WT identity:    (𝑚0+𝑚()*
E )∑: 𝑃(𝑥 𝑃(0)⟩ = Σ

From:                         ΔF 𝐴F 𝑥 𝑃 0 = 2𝑚0 𝑃 𝑥 𝑃 0 + 2 𝐽GH 𝑥 𝑃 0 − 2 Σ 𝛿:,=



Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|789 = 𝐶7

:4 ;<:567

=8
+ Σ|>?@A. +⋯ S. Sharpe (arXiv: 0706.0218)

𝑚,-% ≠ 𝑥𝑚,-%;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only 

by increasing 𝐿$ - a very expensive proposition.” ‒ S. Sharpe.

• Yet another way for the subtraction including 𝑥𝑚+,- using 𝑵𝒇 = 𝟑, 𝑻 = 𝟎 information
→see the talk by Yu Zhang

1. Prepare several different lattice spacing
2. Compute coefficient linear in 𝑚0 :          Σ|9:;~𝑐𝑜𝑛𝑠𝑡. +(

<%
(&
+ 𝐶&)𝑚0 +⋯

3. Separate divergent term :               linear fit in 𝑎/ of: 𝐶9 + 𝑎/𝐶& → 𝑪𝑫 = 𝟎. 𝟑𝟕(𝟐)
4. Estimate 𝑥 through                              Σ|9:; →

*<%(+*?)$'(!
(&

for		𝑚0 → −𝑚,-% at 𝑇 > 𝑇1
this	is	meant	to	impose	renorm.	cond.	Σ|)*+,.=0

→ 𝑵𝒇 = 𝟑; 𝜷 = 𝟒. 𝟎 estimate: 𝒙 = −𝟎. 𝟔 𝟏

• In general, 𝒙 may depend on 𝜷, for now use this value as a reference for all 𝜷
• We also use 𝐶9 (single flavor normalization) of 𝑁0 = 3 for 𝑁0 = 2 + 1



test on 𝑁! = 2 + 1, 𝑇 = 0 measurements
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test on 𝑁! = 2 + 1, 𝑇 = 0 measurements
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Seemingly, both conventional and residual divergence are controlled, but
• need to check if 𝑥 does not depend much on β
• refinement of precision and check applicability range of 𝐶3 necessary  



topological susceptibility

physical point
L=48 - Nt=12 and 16 are very preliminary (low statistics)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-
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mated using the jackknife method with the bin size of which
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optimal DWF
Nf=2+1+1

MDWF
Nf=2+1



Nf=2+1 Physical point computation of QCD thermodynamics with Möbius DWF
l use LCP, determined with T=0 JLQCD knowledge
l machinery to treat power divergence, residual chiral symmetry effect is being finalized
l seemingly the both type of divergence are under control using Nf=3 results
l further improvement underway
l Disconnected chiral susceptibility show no hint of phase transition for Nt=12
l Topological susceptibility showing large lattice artifact for Nt=12. Nt=16 promising.

These are whatʼs newʼs from Lattice 2022

Outlook
l refinement of power divergence subtraction using T=0 information of very fine MDWF
l 483 for Nt=12 and 16 are being run on Fugaku
l plan to be completed by the end of FY2025.
l use of these configuration underway

Ø see talk by Goswami on Friday on charge fluctuation

Summary and Outlook


