

Yasumichi Aoki

Field Theory Research Team RIKEN Center for Computational Science

Acknowledgements

Codes used:

• Grid (HMC)

BQCD (Measurements)

Bridge++ (Measurements)

Hadrons (Measurements)

Grants:

- KAKANHI (FY2020-2024) QCD phase diagram explored by chiral fermions 20H01907
- MEXT Program for Promoting Researches on the Supercomputer Fugaku (PPR-Fugaku)
 - (FY2020-2022) Simulation for basic science: from fundamental laws of particles to creation of nuclei JPMXP1020200105
 - (FY2023-2025) Simulation for basic science: approaching the new quantum era JPMXP1020230411

Computers:

- RIKEN Hokusai BW
- Ito at Kyushu University (hp190124, hp200050)
- Polaire and Grand Chariot at Hokkaido University (hp200130)
- supercomputer **Fugaku** at R-CCS (hp210032,hp220108,hp220233; hp200130, hp230207)

Members

 $YA^{(1)}$,

H. Fukaya⁽²⁾, J. Goswami⁽¹⁾, S. Hashimoto⁽³⁾⁽⁴⁾, I. Kanamori⁽¹⁾, T. Kaneko⁽³⁾⁽⁴⁾⁽⁵⁾,

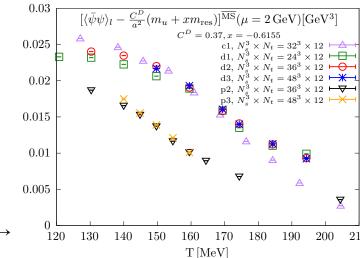
Y. Nakamura⁽¹⁾, Y. Zhang⁽⁶⁾,,,,

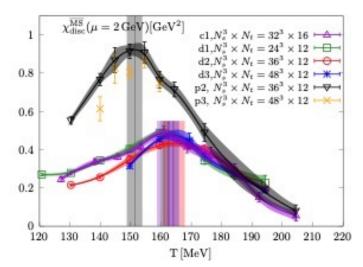
- (1): RIKEN Center for Computational Science
- (2): Osaka University
- (3): KEK
- (4): SOKENDAI
- (5): Kobayashi-Maskawa Institute, Nagoya Univ.
- (6): Bielefeld University

QCD phase transition near and on the physical point

- $N_f=2+1$, 2 fine lattice DWF simulation and reweighting to overlap [PRD(2021), PTEP(2022)]
 - Profound relation among: chiral symmetry, axial anomaly and topological susceptibility
- R & D for the $N_f=2+1$ thermodynamics with Line of Constant Physics (LCP)
 - Codes: Grid, Hadrons, Bridge++
 - LCP / Reweighting
 - Chiral order parameter and renormalization
 - Quark number susceptibility

- $N_f=2+1$ thermodynamics with LCP (mass = ms/10 = about 3 x physical ud quark mass)
 - 2 step renormalization for chiral condensate (power and log divergence) with an xm_{res} correction
 - 2 lattice spacings $N_t=12$, 16
 - 3 volumes $N_s/N_t=2$, 3, 4
 - No phase transition!
 - T_{pc} determined $T_{pc} = 165(2)$ MeV
 - PPR-Fugaku FY2020-2022
 - [PoS Lattice 2021, 2022]
- Physical point study
 - PPR-Fugaku 2023- preliminary results →

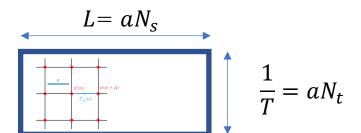


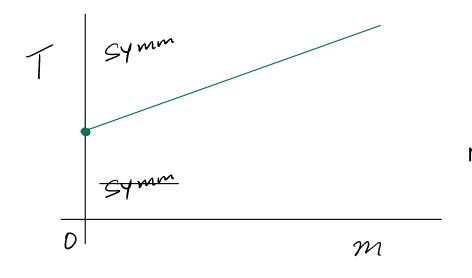


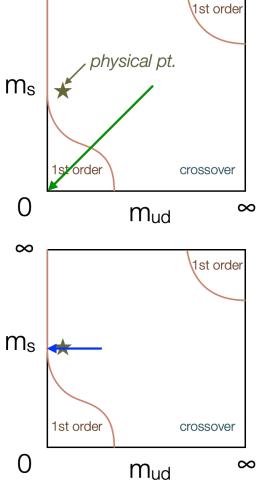
Modes of Simulations

to locate phase transition

- tune parameters near transition
- > T: fixed, change m
- > m: fixed, change T





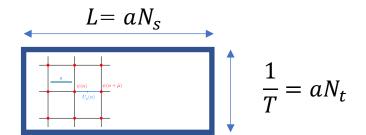


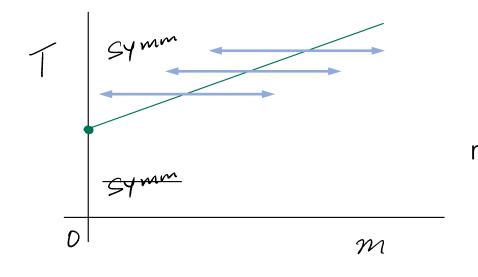
 ∞

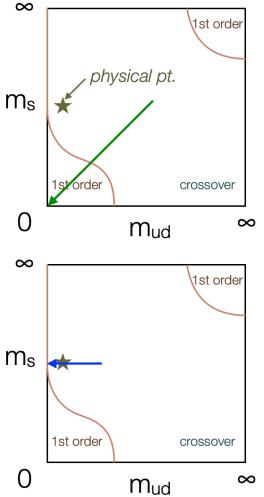
Modes of Simulations

to locate phase transition

- tune parameters near transition
- > T: fixed, change m
- > m: fixed, change T



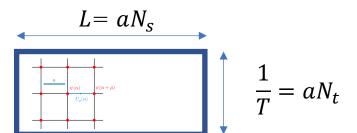




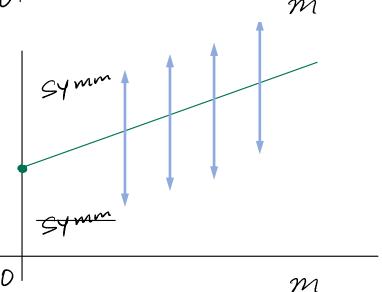
Modes of Simulations

to locate phase transition

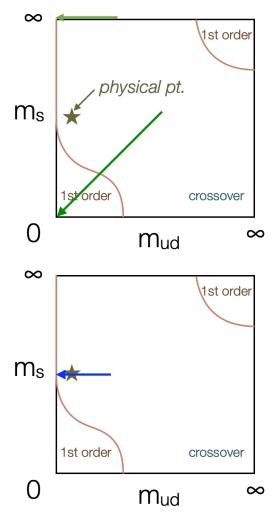
- tune parameters near transition
- > T: fixed, change m
- > m: fixed, change T



Symm m



Nf=2: Ward Thu. morning Nf=3: Zhang Tue. morning



Fixing / changing the controlling parameter

- T: controled by
 - $a(\beta)$: controlled by β
 - N_t : discrete
- *m*: controlled by
 - input quark mass
 - $m(\beta) \leftarrow$ matching with hadronic scale: $M_H(\beta, m)$

N_f =2+1 Möbius DWF LCP for **FY2023-**

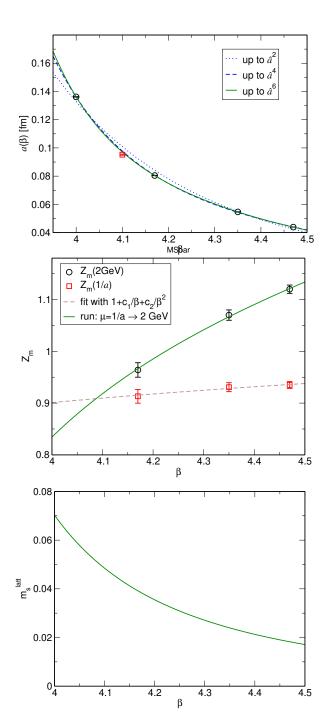
For the Line of Constant Physics: $am_s(\beta)$ with $a(\beta)$

- Step 1: determine $a(\beta)$ [fm] with t_0 (BMW) input
 - at $\beta = 4.0, 4.1^*, 4.17, 4.35, 4.47$
 - * β =4.0 new data (previous step5), to add support at small β
- Step 2: determine $Z_m(\beta)$ using NPR results
 - at $\beta = 4.17, 4.35, 4.47$
 - And use $Z_m(\beta)$ so obtained for $\beta \ge 4.0$: $\beta < 4.17$ region is extrapolation
 - $1/Z_m(\beta)$ will be used to renormalize scalar operator, **chiral condensate**
- Step 3: solve $am_s(\beta)$ with input (quark mass input):
 - $m_s^R = Z_m \cdot a m_s^{latt} \cdot a^{-1} = 92 \text{ MeV}$
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
- See for details in Lattice 2021 proc by S.Aoki et al.

Do simulation

Step 4: proper tuning of input mass: correct m_{res}

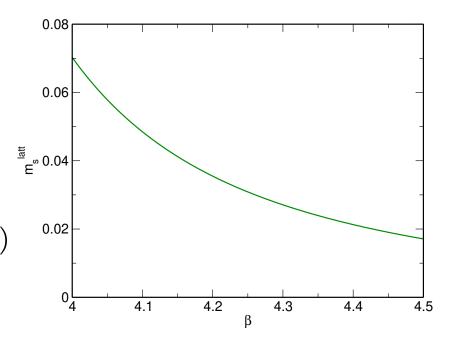
Do simulation 2nd round / correction with reweighting + valence meas.



LCP remarks for FT2023-

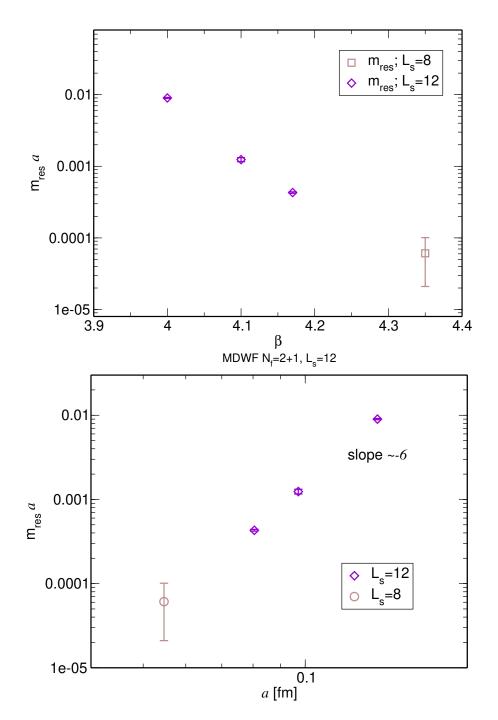
Features

- Fine lattice: use of existing results $(0.04 \le a \le 0.08 \text{ fm})$
 - Granted preciseness towards continuum limit
- Coarse lattice parametrization is an extrapolation
 - Preciseness might be deteriorated
 - Newly computing Z_m e.g. at $\beta=4.0$ (lower edge) might improve, but not done so far
 - NPR of Z_m at $a^{-1} \simeq 1.4$ GeV may have sizable error (window problem) anyway
- Smooth connection from fine to coarse should not alter leading $O(a^2)$
 - Difference should be higher order
- Error estimated from Kaon mass
 - $\Delta m_K \sim 10 \,\%$ at $\beta = 4.0 \,(a \simeq 0.14 \,\mathrm{fm}) \,\to\, \Delta m_K \sim \mathrm{a \ few} \,\%$
 - $\Delta m_K \sim$ a few % at $\beta = 4.17~(a \simeq 0.08~{\rm fm})$



Domain wall fermions

- Möbius DWF → OVF by reweighting
 - Successful (w/ error growth) at $\beta = 4.17$ ($a \simeq 0.08$ fm)
 - See Lattice 2021 JLQCD (presenter: K.Suzuki)
 - Questionable for
 - · Coarser lattice: rough gauge, DWF chiral symmetry breaking
 - Finer lattice: larger V (# sites)
- Chiral fermion with continuum limit
 - A practical choice is to stick on DWF
- Controlling chiral symmetry breaking with DWF
 - WTI residual mass m_{res} : $m_{\pi}^2 \propto (m_f + m_{res})(1 + h.o.)$
 - Understanding $m_{res}(\beta)$ with fixed L_s (5-th dim size)
- $m_{res}[MeV] \sim a^X$, where $X \sim 5$
 - Vanishes quickly as $a \rightarrow 0$
 - 1st (dumb) approximation: forget about m_{res}
 - Better: $m_f^{cont} \leftrightarrow \left(m_f + m_{res}\right)$ but, this is not always enough



Simulation plan: $2^{\rm nd}$ round w/ treatment of m_{res} effect

 $L_s = 12$ fixed throughout this study

•
$$N_t = 12$$

•
$$m_l = 0.1 m_s$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$

•
$$V_s = 24^3, 36^3$$

•
$$N_t = 16$$

•
$$m_l = 0.1 m_s$$

• m_{res} shift by reweighting

•
$$V_s = 32^3$$

•
$$N_t = 12$$

•
$$m_l = m_{ud}$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$

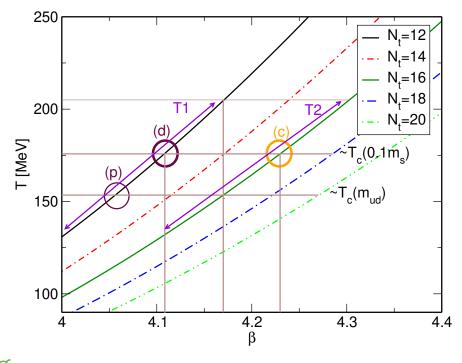
•
$$V_{\rm s} = 36^3, 48^3$$

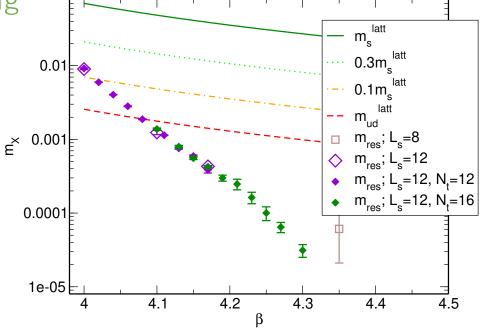
•
$$N_t = 16$$

•
$$m_l = m_{ud}$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$

•
$$V_{\rm s} = 48^3$$





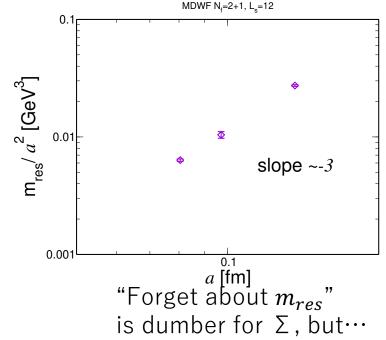
Light quark $\Sigma = -\langle \overline{\psi} \psi \rangle$: conventional and residual power divergence

•
$$\Sigma|_{DWF} \sim C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$
 S. Sharpe (arXiv: 0706.0218)

- $m_{res} \neq x m_{res}$; $x = O(1) \neq 1$
 - "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." S. Sharpe.

• $\Sigma|_{DWF} \rightarrow C_D \frac{x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots; (m_f \rightarrow 0)$

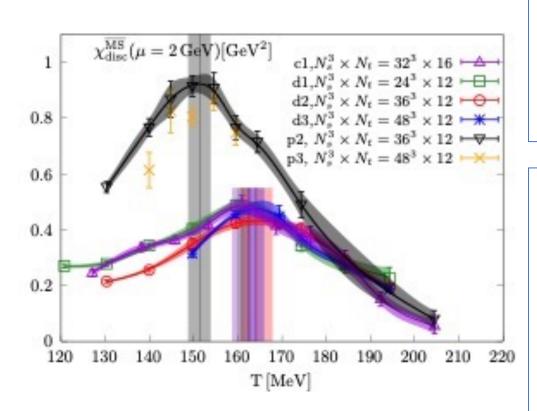
• $\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.} + \cdots; (m_f \rightarrow -m_{res})$



Light quark $\Sigma = -\langle \overline{\psi} \psi \rangle$: no power div. in disconnected susceptibility

- $\chi_{disc} = \langle \overline{u}u \cdot \overline{d}d \rangle \langle \overline{u}u \rangle \langle \overline{d}d \rangle$
 - power divergence in $\langle \overline{\psi}\psi \rangle$ cancels out
 - no new divergence over Σ because no new contact terms
 - needs multiplicative renormalization for logarithmic divergence
 - $Z_S(\beta) = 1/Z_m(\beta)$
 - we stick for now on this quantity
- $\chi_{total} = \langle \overline{\psi}\psi \cdot \overline{\psi}\psi \rangle \langle \overline{\psi}\psi \rangle \langle \overline{\psi}\psi \rangle$
 - has power divergence everywhere
 - needs to understand the power divergence of $\Sigma = -\langle \overline{\psi}\psi \rangle$ first

Disconnected chiral susceptibility at average physical u and d quark mass



Likely NO phase transition at physical point with chiral fermions.

No surprise happened so far..

$$m_l = m_s / 10$$

• $d1,d2,d3: N_t = 12, LT=2,3,4$

• c1 : $N_t = 16$, LT=2

• good scaling $N_t = 12$ -16 observed for LT=2

$m_l = m_{ud}$

- p2,p3: $N_t=12$, aspect ratio LT = 3, 4
 - Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU
 - LT=4 very preliminary, currently running to get to planned satat.
- $T_{pc} = 151$ (3) MeV (preliminary) on $36^3 \times 12$, compared with
 - $T_{pc} = 155 (1)(8)$ w/ DWF ($N_t=8$) by HotQCD (2014)
 - $T_{pc} = 156.5 (1.5) \text{ w/ HISQ by HotQCD } (2019)$
 - $T_{pc} = 158.0 (0.6)$ w/ stout staggered by Budapest-Wuppertal (2020)

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: residual power divergence

• $\Sigma|_{DWF} \sim \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)

$$m_{res} \neq x m_{res}$$
; $x = O(1) \neq 1$

- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." S. Sharpe.
- We propose another way to estimate xm_{res} using m'_{res} If chiral symmetry is restored $\rightarrow \Sigma|_{cont.} = 0$ $\rightarrow m_f = -xm_{res} \text{ is a zero of } \Sigma|_{DWE} \text{ which is related with}$

$$m_{res} = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x},t)P(0)\rangle}{\sum_{\vec{x}} \langle P(\vec{x})P(0)\rangle} \qquad (\Leftrightarrow m_{res} = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x},t)P(0)\rangle}{\sum_{\vec{x}} \langle P(\vec{x},t)P(0)\rangle} \rightarrow \frac{\langle 0|J_{5q}|\pi\rangle}{\langle 0|P|\pi\rangle}$$

$$m_f = -m_{res}'$$
 is a zero of $\Sigma|_{DWF}$ $(\Leftrightarrow m_f = -m_{res})$ is a zero of m_π^2 Due to Axial WT identity: $(m_f + m_{res}') \sum_x \langle P(x) P(0) \rangle = \Sigma$
From: $\Delta_\mu \langle A_\mu(x) P(0) \rangle = 2m_f \langle P(x) P(0) \rangle + 2 \langle J_{5g}(x) P(0) \rangle - 2 \sum_x \delta_{x,0}$

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: residual power divergence

• $\Sigma|_{DWF} = C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)

$$m_{res} \neq x m_{res}$$
; $x = O(1) \neq 1$

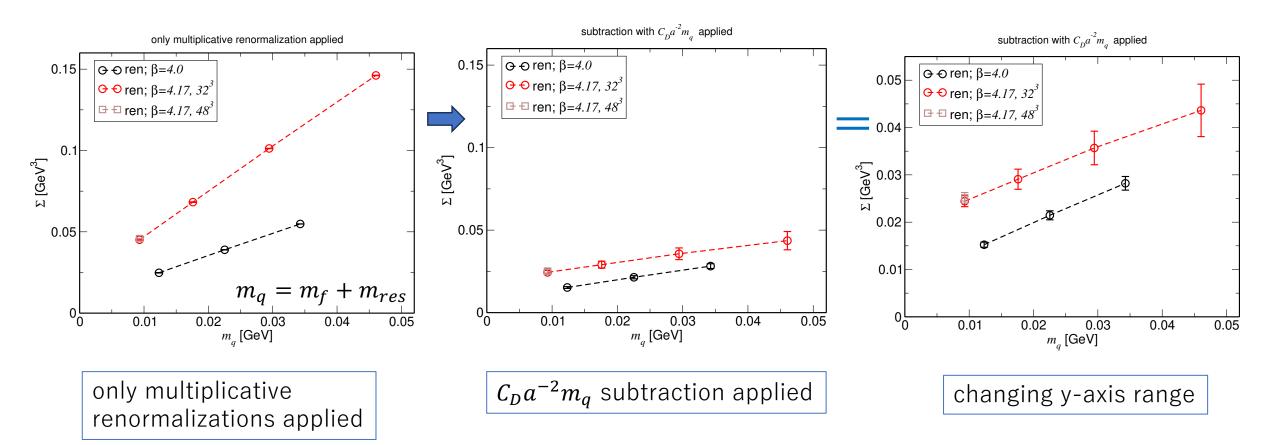
- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." S. Sharpe.
- Yet another way for the subtraction including xm_{res} using $N_f=3$, T=0 information —see the talk by Yu Zhang
 - 1. Prepare several different lattice spacing
 - 2. Compute coefficient linear in m_f : $\Sigma|_{DWF} \sim const. + (\frac{c_D}{a^2} + C_R)m_f + \cdots$
 - 3. Separate divergent term : linear fit in a^2 of. $C_D + a^2 C_R \rightarrow C_D = 0.37(2)$
 - 4. Estimate x through $\Sigma|_{DWF} \to \frac{-c_D(1-x)m_{res}}{a^2}$ for $m_f \to -m_{res}$ at $T > T_c$

this is meant to impose renorm. cond. $\Sigma|_{cont.}=0$

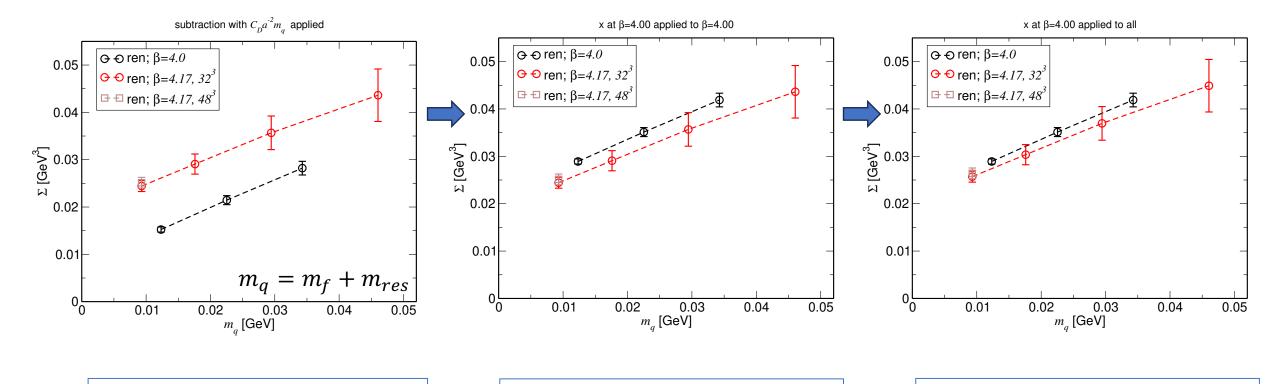
$$\rightarrow$$
 $N_f = 3$; $\beta = 4.0$ estimate: $x = -0.6(1)$

- In general, \boldsymbol{x} may depend on $\boldsymbol{\beta}$, for now use this value as a reference for all $\boldsymbol{\beta}$
- We also use C_D (single flavor normalization) of $N_f=3$ for $N_f=2+1$

test on $N_f=2+1$, T=0 measurements



test on $N_f=2+1$, T=0 measurements



 $C_D a^{-2} m_q$ subtraction applied

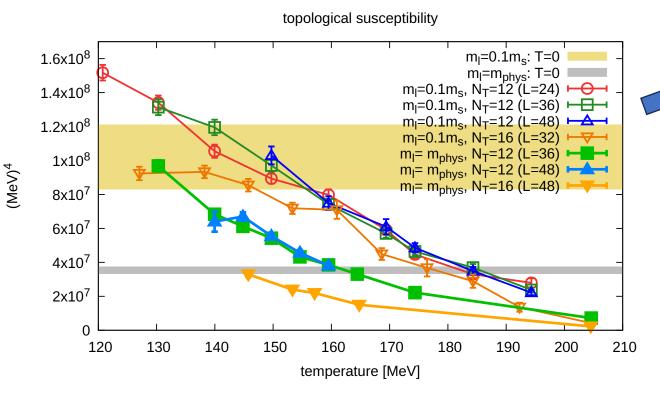
 $C_D a^{-2} (1-x) m_{res}$ subtraction applied only to $\beta = 4.0$

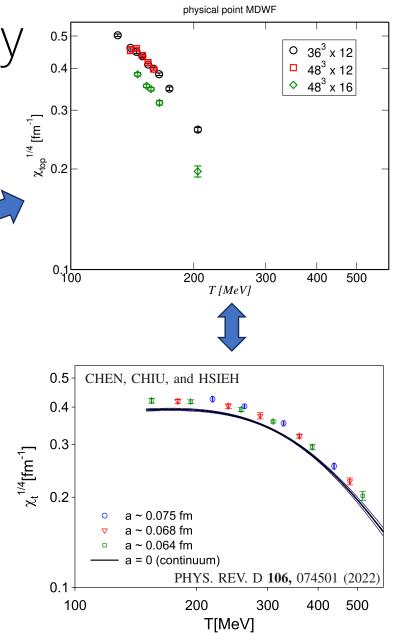
 $C_D a^{-2} (1-x) m_{res}$ subtraction applied to all assuming x is universal

Seemingly, both conventional and residual divergence are controlled, but

- need to check if x does not depend much on β
- refinement of precision and check applicability range of C_D necessary

topological susceptibility





 $\begin{array}{c} MDWF \\ N_f = 2 + 1 \end{array}$

optimal DWF $N_f=2+1+1$

physical point L=48 - Nt=12 and 16 are very preliminary (low statistics)

Summary and Outlook

Nf=2+1 Physical point computation of QCD thermodynamics with Möbius DWF

- use LCP, determined with T=0 JLQCD knowledge
- machinery to treat power divergence, residual chiral symmetry effect is being finalized
- seemingly the both type of divergence are under control using Nf=3 results
- further improvement underway
- Disconnected chiral susceptibility show no hint of phase transition for Nt=12
- Topological susceptibility showing large lattice artifact for Nt=12. Nt=16 promising.

These are what's new's from Lattice 2022

Outlook

- \bullet refinement of power divergence subtraction using T=0 information of very fine MDWF
- 483 for Nt=12 and 16 are being run on Fugaku
- plan to be completed by the end of FY2025.
- use of these configuration underway
 - > see talk by Goswami on Friday on charge fluctuation