Towards a parameter-free determination of QCD critical exponents and chiral phase transition temperature

Sabarnya Mitra

Faculty of Physics, Universität Bielefeld

In collab. with Frithjof Karsch and Sipaz Sharma

Critical temp and expts

Motivation : QCD phase diagram

- Aim : Locate QCD critical point \leftarrow constraining along T
- 3-dim. model analysis : $T_{cp} < T_{tri} < T_c < T_{pc}$.

From Lattice QCD, $T_{pc} = 156.5 \pm 1.5$ MeV [HotQCD, 1812.08235], = 158.0 \pm 0.6 MeV [Borsanyi et. al. 2002.02821]

 $T_c = 132^{+3}_{-6}$ MeV [HotQCD, 1903.04801], = 134^{+6}_{-4} MeV [Kotov et. al. 2105.09842]

< □ > < □ > < □ > < □ > < □ > < □ >

In a previous work [Ding et. al. 2403.09390] \leftarrow We

- used critical exponents, scaling functions of O(2) universality class
- adjusted fit range to $T_c \pm 3\% \rightarrow$ obtain fits based **only** on scaling ansatz (no regular terms)
- determined *T_c*, non-universal parameters *t*₀, *h*₀ in the scaling ansatz from fits ⇒ good scaling behavior only within fit range. So ···

In this present work (topic of this talk),

- we try to find T_c in a way free of fits. This is done by estimating T_c :
- without using at all, any O(2) or O(4) universality class fitting parameter or other properties of this class, and
- **2** with **no knowledge** of **critical exponents** β , δ at **input level**
 - Thus \rightarrow a fit-independent, "parameter-free" approach
 - For this, work with an improved order parameter → try to control, <u>reduce</u> regular contribution of the unimproved one

A quick review · · ·

Universality class, critical exponents and scaling

- Chiral Ph. tr. $\rightarrow 2^{nd} order$ [Pisarski, Wilczek, PRD 29, 338(R)] $\rightarrow SU(2)_L \times SU(2)_R$ [QGP] $\xrightarrow{\text{spontaneous}}_{\text{breaking}} SU(2)_V$ [hadrons]
- Order parameter \rightarrow light quark chiral condensate $\langle \bar{\psi}\psi \rangle_{\ell}$ source/symmetry-breaking field \rightarrow light quark mass m_{ℓ} , where
- This ph. tr. $\in O(4)$ univ. class $\stackrel{\text{indicated}}{\stackrel{\text{by}}{\longrightarrow}} O(4)$ crit. expts. (2 independent crit. expts. : β, δ)
- Here, estimate T_c and δ [scl. rel. : $\langle \bar{\psi}\psi \rangle_{\ell} \sim m_{\ell}^{1/\delta}$ at $T = T_c$]
- Our working $S_{QCD} \rightarrow$ **HISQ** action preserves **O(2)** \subset **O(4)**
- Small 1% diff. $\left[\delta_{(O(4))} \approx 1.01 \, \delta_{(O(2))} \right]$ [Karsch et. al. 2304.01710]

• Close to T_c in scaling region (SR), we can write

$$\langle \bar{\psi}\psi \rangle_{\ell} = H^{\frac{1}{\delta}} f_{G}(z), \qquad \chi_{\ell} = \frac{\partial \langle \bar{\psi}\psi \rangle_{\ell}}{\partial m_{\ell}} = \frac{1}{\delta} H^{\frac{1}{\delta}-1} f_{\chi}(z)$$
(1)

- Here, $\langle ar{\psi}\psi
 angle_\ell,\chi_\ell,m_\ell
 ightarrow$ dimensionless, $H=m_\ell/m_s$
- $f_G(z), f_{\chi}(z) \rightarrow$ scaling functions. To some scaling parameters,
- Scaling variable $z = t H^{-1/\beta \delta}$, Reduced temp. $t = \frac{T}{T_c} 1$
- $\bullet~{\sf Eqn.}(1)\to {\sf only~singular}$ cont. as ${\it singular}\gg {\it regular}$ in SR
- However, order parameter $\langle \bar{\psi}\psi \rangle_{\ell}$ has **divergences** (problems). So · · ·

Improved order parameter

We work with **improved** order parameter M, where

$$M = M_{\ell} - H \chi_{\ell} \quad \text{where}$$

$$M_{\ell} = \frac{m_{s}}{f_{K}^{4}} \langle \bar{\psi}\psi \rangle_{\ell}, \quad \chi_{\ell} = m_{s} \frac{\partial M_{\ell}}{\partial m_{\ell}} \quad \text{which makes}$$

$$M = H^{\frac{1}{\delta}} f_{G\chi}(z) \quad \text{with} \quad f_{G\chi}(z) = f_{G}(z) - f_{\chi}(z)$$

$$(3)$$

 $f_K \rightarrow$ kaon decay constant. "Improved" features of this M:

- No additive divergences $\mathcal{O}(a^{-2}) \rightarrow$ well-def. in continuum limit
- Mult. renorm. by $m_s \rightarrow no \log div. \rightarrow well-def.$ in chiral limit
- No $\mathcal{O}(H)$ regular terms in $M \Rightarrow$ reduced $(M_{regular} < M_{\ell,regular})$
- Also directly related to scl. func. $f_{G\chi}(z)$. Advantages :

Plot of the scaling function

- Inflection point of $f_{G\chi}(z)$ closer to $\underline{z} = 0$ than $f_G(z)$
- $z_{t,G\chi} = 0.629 \, (10), \ z_{t,G} = 0.7991 \, (96)$ [Ding. et. al., 2403.09390]
- So, weaker m_{ℓ} dependence of T_c while working with $f_{G_{\chi}}(z) \Rightarrow$
- Improved ord. par. $M \xleftarrow{\text{better}}{\text{than}}$ unimproved M_{ℓ} , for finding T_c . Using this,

Propose a new observable $B(T, H_1, H_2)$ in this work :

$$B(T, H_1, H_2) = \frac{\ln \left[\frac{M_\ell^m(H_2)}{M_\ell^{im}(H_1)}\right]}{\ln \left[\frac{H_2}{H_1}\right]} \quad \text{(with } H_2 = c H_1\text{)} \quad (4)$$
$$= \frac{1}{\delta} + \frac{\ln \left[f_{G\chi}(z(H_2))/f_{G\chi}(z(H_1))\right]}{\ln (c)}, \quad \text{in scaling region} \quad (5)$$

- This gives $B(T_c, H_1, H_2) = 1/\delta$, which ensures
- A unique intersection point for different H_1, H_2 lines. Whose
- **x**-coordinate \rightarrow **T**_c, **y**-coordinate \rightarrow 1/ $\boldsymbol{\delta}$ (in *B* vs **T** plane)
- How we expect it to look like:

Plot of B vs T

- All lines cross through a unique point at $T = T_c$
- Ordering of lines reverses exactly on either sides of $T = T_c$
- These \rightarrow "parameter-free" features (holds also for other z_0, β, δ)
- Great, but how do LQCD results look like?

Direct Lattice QCD results

• With $N_{\tau} = 8$ lattices, working $H^{-1} = 20, 27, 40, 80, 160$ (used before)

- We find for $H^{-1} \ge 40$, intersection pt. within T_c range [HotQCD, 1903.04801] and y-coordinate $\approx O(2) : 1/\delta$
- And \$\mathcal{O}(H^3)\$ regular cont. negligible while close to \$T_c\$ for these masses. However, ...

• Lines involving $H^{-1} = 20$ and 27 cut lines of lighter m_{ℓ} not in a unique point. For these $m_{\ell} = m_s/20, m_s/27$,

 Systematics not clear at present ⇒ WORK GOING ON; generate more statistics, add data at additional *T*-values → control effect of regular terms in the vicinity of *T_c*

Conclusions

- A new divergence-free estimator of T_c and δ , well-defined for continuum and chiral limits with reduced regular contributions
- Within scaling region, one obtains a unique intersection point for lighter quark masses, also from lattice QCD
- This point lies within predicted T_c with results consistent with δ of O(2) univ. class.

Outlook:

- Understand systematics for higher quark masses
- Check finite volume effects in future
- Find observable to resolve O(2) and O(4) critical exponents
- Proceed towards continuum limit.

Conclusions

- A new divergence-free estimator of T_c and δ , well-defined for continuum and chiral limits with reduced regular contributions
- Within scaling region, one obtains a unique intersection point for lighter quark masses, also from lattice QCD
- This point lies within predicted T_c with results consistent with δ of O(2) univ. class.

Outlook:

- Understand systematics for higher quark masses
- Check finite volume effects in future
- Find observable to resolve O(2) and O(4) critical exponents
- Proceed towards continuum limit. THANK YOU ALL!

$$t = \frac{T - T_c}{t_0 T_c} = \frac{\tau}{t_0}$$
 $h = \frac{m_\ell}{h_0 m_s} = \frac{H}{h_0}$ $\ell = \frac{\ell_0}{L}$

where t_0, h_0, ℓ_0 are non-universal scaling parameters.

7 = 707h 7l = 7l 07l h

$$z_0 = \frac{h_0^{1/\beta\delta}}{t_0} , \qquad z_{L,0} = h_0^{\nu/\beta\delta} \ell_0 \qquad \text{(fitting param.)}$$
$$z_b = \tau H^{-1/\beta\delta} , \qquad z_{L,b} = \frac{1}{L} H^{-\nu/\beta\delta}$$

Sabarnya Mitra (Uni Bielefeld)

э

where

Image: Image:

► < ∃ ►</p>

$$M_{\ell} = h^{\frac{1}{\delta}} f_{G}(z) + f_{sub} (T, H)$$

$$\chi_{\ell} = h_{0}^{-1} h^{\frac{1}{\delta} - 1} f_{\chi}(z) + g_{sub} (T, H)$$

$$M = h^{\frac{1}{\delta}} f_{G\chi}(z) + p_{sub} (T, H)$$