Charm thermodynamics near chiral crossover

Sipaz Sharma

for the HotQCD Collaboration

The 41st Lattice Conference, Lattice 2024

University of Liverpool, United Kingdom

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019; Borsanyi et al., 2020; Kotov et al., 2021]
- \blacktriangleright In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below $T_{\rm pc}.$

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019; Borsanyi et al., 2020; Kotov et al., 2021]
- ▶ In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below $T_{\rm pc}$.
- \blacktriangleright Do charmed hadrons start melting at $T_{\rm pc}?$ compare lattice results with HRG model.

Onset of the charmed hadrons' melting

Dimensionless generalized susceptibilities of the conserved charges:

$$\chi_{klmn}^{BQSC} = \frac{\partial^{(k+l+m+n)} \left[P\left(\hat{\mu}_{B}, \hat{\mu}_{Q}, \hat{\mu}_{S}, \hat{\mu}_{C}\right) / T^{4}\right]}{\partial \hat{\mu}_{B}^{k} \partial \hat{\mu}_{Q}^{l} \partial \hat{\mu}_{S}^{m} \partial \hat{\mu}_{C}^{n}}\Big|_{\overrightarrow{\mu} = 0}$$

Onset of the charmed hadrons' melting

Dimensionless generalized susceptibilities of the conserved charges:

$$\chi_{klmn}^{BQSC} = \frac{\partial^{(k+l+m+n)} \left[P \left(\hat{\mu}_{B}, \hat{\mu}_{Q}, \hat{\mu}_{S}, \hat{\mu}_{C} \right) / T^{4} \right]}{\partial \hat{\mu}_{B}^{k} \partial \hat{\mu}_{Q}^{l} \partial \hat{\mu}_{S}^{m} \partial \hat{\mu}_{C}^{n}} \Big|_{\overrightarrow{\mu} = 0}$$

▶ In the Hadron Resonance gas approximation:

$$M_{\rm C}(T, \overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{i} g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T) \cosh(Q_i \hat{\mu}_{\rm Q} + S_i \hat{\mu}_{\rm S} + C_i \hat{\mu}_{\rm C})$$

► For Baryons the argument of $\cosh c$ changes to $B_i\hat{\mu}_B + Q_i\hat{\mu}_Q + S_i\hat{\mu}_S + C_i\hat{\mu}_C$

Onset of the charmed hadrons' melting

► Irrespective of the details of the baryon mass spectrum, in the validity range of HRG, $\chi_{mn}^{BC}/\chi_{kl}^{BC} = 1$, $\forall (m + n), (k + l) \in$ even. Phys.Lett.B 850 (2024), arXiv:2312.12857

Sipaz Sharma

Bielefeld University

July 30th, 2024 4 / 18

 Do charmed hadrons start melting at T_{pc}? – compare lattice results with HRG model.

Yes, states with fractional B start appearing near $T_{\rm pc}.$

 \blacktriangleright Do charmed hadrons start melting at $T_{\rm pc}?$ – compare lattice results with HRG model.

Yes, states with fractional B start appearing near $T_{\rm pc}.$

What are the relevant charmed dofs after the onset of hadron melting? Can we get a signal for the appearance of quarks at T_{pc}?

Charm degrees of freedom above T_pc

Based on carrriers of C in low and high-T phase, pose a quasi-particle model consisting of non-interacting meson, baryon and quark-like states:

$$\begin{aligned} P_{C}(T, \hat{\mu}_{C}, \hat{\mu}_{B})/T^{4} &= P_{M}^{C}(T) \cosh(\hat{\mu}_{C} + ...) + P_{B}^{C}(T) \cosh(\hat{\mu}_{C} + \hat{\mu}_{B} + ...) \\ &+ P_{q}^{C}(T) \cosh(\frac{2}{3}\hat{\mu}_{Q} + \frac{1}{3}\hat{\mu}_{B} + \hat{\mu}_{C}) \end{aligned}$$

[S. Mukherjee et al., 2016]

Charm degrees of freedom above T_pc

Based on carrriers of C in low and high-T phase, pose a quasi-particle model consisting of non-interacting meson, baryon and quark-like states:

$$\begin{aligned} P_{C}(T, \hat{\mu}_{C}, \hat{\mu}_{B})/T^{4} &= P_{M}^{C}(T) \cosh(\hat{\mu}_{C} + ...) + P_{B}^{C}(T) \cosh(\hat{\mu}_{C} + \hat{\mu}_{B} + ...) \\ &+ P_{q}^{C}(T) \cosh(\frac{2}{3}\hat{\mu}_{Q} + \frac{1}{3}\hat{\mu}_{B} + \hat{\mu}_{C}) \end{aligned}$$

[S. Mukherjee et al., 2016]

▶ Use quantum numbers B and C to construct partial pressures:

$$\begin{split} P_{q}^{C} &= 9(\chi_{13}^{BC} - \chi_{22}^{BC})/2 \\ P_{B}^{C} &= (3\chi_{22}^{BC} - \chi_{13}^{BC})/2 \\ P_{M}^{C} &= \chi_{4}^{C} + 3\chi_{22}^{BC} - 4\chi_{13}^{BC} \end{split}$$

► Constraint on cumulants in a simple quasi-particle model: $c = \chi_{13}^{BC} + 3\chi_{31}^{BC} - 4\chi_{22}^{BC} = 0$ – our data satisfies this constraint.

Charm-quark-like excitations in QGP

Right after T_{pc} , P_q starts contributing to P_C , which is compensated by a reduction (and deviation from HRG) in the fractional contribution of the hadron-like states to P_C . Phys.Lett.B 850 (2024), arXiv:2312.12857

- Do charmed hadrons start melting at T_{pc}?
 Yes, states with fractional B start appearing near T_{pc}.
- ▶ What are the relevant charmed dofs after the onset of hadron melting? Can we get a signal for the appearance of quarks at T_{pc}? Evidence of deconfinement in terms of presence of charm quark-like excitations in QGP.

 $P_{\rm C}$ receives 50% contribution from charmed hadron-like excitations at $T\simeq 1.1~T_{\rm pc}.$

- Do charmed hadrons start melting at T_{pc}?
 Yes, states with fractional B start appearing near T_{pc}.
- ▶ What are the relevant charmed dofs after the onset of hadron melting? Can we get a signal for the appearance of quarks at T_{pc}? Evidence of deconfinement in terms of presence of charm quark-like excitations in QGP.

 $P_{\rm C}$ receives 50% contribution from charmed hadron-like excitations at $T\simeq 1.1~T_{\rm pc}.$

 \blacktriangleright For $T < T_{\rm pc}$, do charm fluctuations calculated on the lattice receive enhanced contributions from not-yet-discovered open charm states?

Ratios of baryonic and mesonic contributions to P_C

- Do charmed hadrons start melting at T_{pc}? Yes, states with fractional B start appearing near T_{pc}.
- ▶ What are the relevant charmed dofs after the onset of hadron melting? Can we get a signal for the appearance of quarks at T_{pc}? Evidence of deconfinement in terms of presence of charm quark-like excitations in QGP. P_C receives 50% contribution from charmed hadron-like excitations at
 - $T \simeq 1.1 T_{pc}$.
- ▶ For T < T_{pc}, do charm fluctuations calculated on the lattice receive enhanced contributions from not-yet-discovered open charm states? Incomplete PDG records of the charmed hadrons in each subsector.

- Do charmed hadrons start melting at T_{pc}? Yes, states with fractional B start appearing near T_{pc}.
- What are the relevant charmed dofs after the onset of hadron melting? Can we get a signal for the appearance of quarks at T_{pc}? Evidence of deconfinement in terms of presence of charm quark-like excitations in QGP.
 Por receives 50% contribution from charmed hadron-like excitations and the provided of the p
 - P_C receives 50% contribution from charmed hadron-like excitations at $T\simeq 1.1~T_{\rm pc}.$
- ▶ For T < T_{pc}, do charm fluctuations calculated on the lattice receive enhanced contributions from not-yet-discovered open charm states? Incomplete PDG records of the charmed hadrons in each subsector.
- Wait, what about the simulations details? What about the continuum limit?

Simulation Details

Partition function of QCD with 2 light, 1 strange and 1 charm quark flavors is :

 $\mathcal{Z} = \int \mathcal{D}[U] \{ \text{det } D(m_l) \}^{2/4} \{ \text{det } D(m_s) \}^{1/4} \{ \text{det } D(m_c) \}^{1/4} e^{-S_g}.$

This can be used to calculate susceptibilities in the BQSC basis.

- ▶ We used (2+1)-flavor HISQ configurations generated by HotQCD collaboration for $m_s/m_l = 27$ and $N_\tau = 8, 12$ and 16.
- $T = (aN_{\tau})^{-1} \implies$ three lattice spacings at a fixed temperature.
- ▶ We treated charm-quark sector in the quenched approximation.
- ▶ $O(am_c^4)$ tree level lattice artifacts are removed by adding so-called epsilon-term, which leads to sub-percent errors in observables linked to charm at $am_c \approx 0.5$ or $a \approx 0.1$ fm. [[HPQCD, UKQCD],2006]
- We have gone upto fourth order in calculating various charm susceptibilties.
- ▶ We made use of 500 random vectors to do unbiased stochasic estimation of various traces per configuration.

Sipaz Sharma

Bielefeld University

Continuum limit: Total charm pressure

 \blacktriangleright Two different LCPs: a) charmonium mass, b) $\rm m_c/m_s$

▶ $a \approx 0.2$ fm

Continuum limit: Total charm pressure

▶ Two different LCPs: a) charmonium mass, b) m_c/m_s ▶ $a \approx 0.2$ fm + $a \approx 0.1$ fm

Continuum limit: Total charm pressure

- Absolute predictions in the charm sector are particularly sensitive to the precise tuning of the bare input quark masses.
- Two different LCPs converge in the continuum limit:
 - $a\approx 0.2~\mbox{fm}$ + $a\approx 0.1~\mbox{fm}$ + $a\approx 0.05~\mbox{fm}$

Sipaz Sharma

Bielefeld University

Ratios calculated using different LCPs

- of LCP cancels to a large extent in the ratios.
- All previously shown results were based on ratios, and hence valid in the continuum limit.

Major source of the cutoff effects

- ► The ordering of various partial charm pressures based on different LCPs and N_{τ} values can be understood from the ordering of the $\underline{am_c}$ values which determine the mass of the lightest charmed hadron i.e., D-meson.
- ▶ $\beta = [6.285 6.500]$ is relevant for $N_{\tau} = 8$; $\beta = [6.712 6.910]$ is relevant for $N_{\tau} = 12$; $\beta = [7.054 7.095]$ is relevant for $N_{\tau} = 16$.

Preliminary construction of a new LCP for $N_{\tau}=8$

- ▶ At a fixed temperature, $\ln(\chi_4^C)$ can be approximated as a linear function of am_c .
- Construction of a new LCP based on D meson mass is ongoing. This will enable us to take the continuum limit.
- In the right figure, interpolations are based on a rational ansatz. We want to choose an ansatz that incorporates basic features of the low and high temperature limits.

Sipaz Sharma

Bielefeld University

Summary and Outlook

- Charmed hadrons start dissociating at T_{pc}?
- Evidence of deconfinement in terms of presence of charm quark-like excitations in QGP.
- $\blacktriangleright~P_C$ receives 50% contribution from charmed hadron-like excitations at $T\simeq 1.1~T_{pc}.$
- ► For T < T_{pc}, do charm fluctuations calculated on the lattice receive enhanced contributions from not-yet-discovered open charm states?
- ► Incomplete PDG records of the charmed hadrons in each subsector.

Summary and Outlook

- Charmed hadrons start dissociating at T_{pc}?
- Evidence of deconfinement in terms of presence of charm quark-like excitations in QGP.
- $\blacktriangleright~P_C$ receives 50% contribution from charmed hadron-like excitations at $T\simeq 1.1~T_{pc}.$
- $\blacktriangleright \mbox{ For } T < T_{pc} \mbox{, do charm fluctuations calculated on the lattice receive} \\ enhanced contributions from not-yet-discovered open charm states? \end{tabular}$
- ► Incomplete PDG records of the charmed hadrons in each subsector.
- ▶ It would be good to look into spectral functions for charmed hadron correlators in order to further give support to the quasi-particle nature of the hadronic excitations above $T_{\rm pc}$.
- ► Continuum limit will enable unravelling many interesting aspects.