

Non-perturbative thermal QCD at very high temperatures

Leonardo Giusti

University of Milano-Bicocca & INFN

Collaboration:

Bresciani, Dalla Brida, LG, Harris, Laudicina, Pepe, Rescigno, JHEP 04 (2022) 034 [2112.05427], PLB 855 (2024) 138799 [2405.04182], and in preparation

Outline

- Non-perturbative (NP) thermal QCD up to very high T: why?
- Renormalization and shifted boundary conditions: how?
- Lattice setup
- Results for mesonic and baryonic screening masses [Talk by D. Laudicina in this session at 3:35 p.m.]
- Preliminary results for the Equation of State [Next two talks in this session by M. Pepe and M. Bresciani]
- Conclusions and Outlook

Thermal QCD: relevant scales and effective theories [Ginsparg 80; Linde 80; Appelquist, Pisarski 81; Braaten, Nieto 96; ...]

• The three relevant scales in the problem are:

$$M=\pi\,T+\dots$$
 Fermions [3D NRQCD] and non-zero Matsubara gluon modes

$$m_{\scriptscriptstyle
m E} \propto gT + \dots$$
 A₀ zero Matsubara gluon modes [3D EQCD]

$$g_{\rm E}^2 = g^2 T + \dots A_i$$
 zero Matsubara gluon modes [3D MQCD]

 Thanks to asymptotic freedom, at asymptotically high T a hierarchy between the three scales is generated

$$\frac{g_{\rm E}^2}{\pi} \ll m_{\rm E} \ll \pi T \qquad \Longleftrightarrow \qquad \left(\frac{g}{\pi}\right)^2 \ll \frac{g}{\pi} \ll 1$$

- Perturbation theory developed for high T regime [See Laine, Vuorinen 17 for a review]
- Contributions from lowest scale must always be computed NP

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

3/11

• For the SU(3) YM theory, if we (assume convergence and) fit the 4 highest temperatures by including an effective (NP) term

$$\frac{s(T)}{T^3} = \frac{32\pi^2}{45} \left\{ 1 + s_2 \hat{g}^2 + s_3 \hat{g}^3 + s_4(\hat{g}) \hat{g}^4 + s_5 \hat{g}^5 + s_6(\hat{g}) \hat{g}^6 + \frac{q_c}{(2\pi)^6} \hat{g}^6 \right\}$$

the $\mathcal{O}(\hat{g}^6)$ is still \sim 50% of the total contribution from interactions at $T=231\,T_c\sim 68$ GeV $(\hat{g}/\pi\sim 0.3)$. More sophisticated PT intensively studied in the literature

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

 All these facts call for a non-perturbative study of thermal QCD up to very high T to identify the origin and the magnitude of the various contributions with controlled and improvable errors

Renormalization I (lines of constant Physics)

Hadronic renormalization scheme is not a viable option because

$$M_{\rm hadron} \ll T$$

Accommodating 2 very different scales on a lattice too expensive

• Way to go is the NP renormalization of the coupling:

* Define the renormalized g^2 NP, e.g. SF (GF) couplings ($L = L_0$)

$$\left. \frac{\partial \Gamma}{\partial \eta} \right|_{\eta=0} \equiv \frac{12\pi}{\bar{g}_{\rm SF}^2(\mu)} \,, \quad \mu = \frac{1}{L_0} \label{eq:eta_fit}$$

where C and C' depend on η , and $\Gamma = -\ln[Z]$

* Define quark masses NP by WIs

Renormalization II

- ullet Relate $g^2(\mu_{
 m hadron})$ to $M_{
 m hadron}$ NP
- Determine running of $g^2(\mu)$ NP
- Compute $g^2(\mu)$ for values of μ up to the electroweak scale
- For each value of T, renormalize thermal QCD by requiring

$$g_{\rm SF}^2(g_0^2,a\mu)=\bar{g}_{\rm SF}^2(\mu)$$

with $a\mu\ll 1$ and $\mu=T\sqrt{2}$

• Last condition fixes the dependence of the bare g_0^2 on a, for values of a at which μ and T can be easily accommodated

Shifted boundary conditions

By adopting shifted boundary conditions

$$U_{\mu}(x_{0} + L_{0}, \mathbf{x}) = U_{\mu}(x_{0}, \mathbf{x} - L_{0}\xi)$$

$$\psi(x_{0} + L_{0}, \mathbf{x}) = -\psi(x_{0}, \mathbf{x} - L_{0}\xi)$$

$$\overline{\psi}(x_{0} + L_{0}, \mathbf{x}) = -\overline{\psi}(x_{0}, \mathbf{x} - L_{0}\xi)$$

[Meyer, LG 11-13]

the entropy density can be computed as

$$s = -\frac{L_0 \left(1 + \vec{\xi}^2\right)^{3/2}}{\xi_k} \left\langle T_{0k} \right\rangle_{\vec{\xi}}$$

and the zero-temperature subtraction is avoided in the EoS

Systematics: topology and finite-size effects

• At very high temperature the topological charge distribution is expected to be highly peaked at zero $[b \sim 9 \text{ for } N_f = 3]$

$$P_{\nu} = \frac{1}{\sqrt{2\pi < \nu^2 >}} e^{-\frac{\nu^2}{2 < \nu^2 >}} + \dots, \quad <\nu^2 > \propto L^3 m^3 T^{-b}$$

• The contributions from non-zero topological sectors to observables

$$\langle \mathcal{O} \rangle = \sum_{\nu} P_{\nu} \langle \mathcal{O} \rangle_{\nu}$$

are negligible within statistical errors for the volumes considered. Simulations can be safely restricted to the zero topology sector.

- At asymptotically high T thermal QCD has a mass gap proportional to $g_v^2 = g^2T + \dots$
- Finite size effects are exponentially small in g^2TL , and can be made negligible within errors in large enough volumes

Lattice setup

- ullet Wilson (T_0-T_8) and Lüscher–Weisz (T_9-T_{11}) actions for gluons
- NP O(a)-improved Wilson quarks
- Four lattice spacings for each T, $L_0/a = 4, 6, 8$ and 10
- Shifted boundary conditions
- Restriction to zero topology

T	$\bar{g}_{\mathrm{SF}}^2(\mu = T\sqrt{2})$	$T ext{ (GeV)}$
T_0	1.01640	164.6(5.6)
T_1	1.11000	82.3(2.8)
T_2	1.18446	51.4(1.7)
T_3	1.26569	32.8(1.0)
T_4	1.3627	20.63(63)
T_5	1.4808	12.77(37)
T_6	1.6173	8.03(22)
T_7	1.7943	4.91(13)
T_8	2.0120	3.040(78)

T	$\bar{g}_{\mathrm{GF}}^2(\mu = T/\sqrt{2})$	T (GeV)
T_9	2.7359	2.833(68)
T_{10}	3.2029	1.821(39)
T_{11}	3.8643	1.167(23)

• The linear extension of spatial directions is L/a=288,144, i.e. 10 < LT < 50. Finite volume effects negligible given the mass gap. Explicitly checked at the highest and lowest temperature

Results for mesonic screening masses

• Effective theory + NLO matching predict

$$m_{\mathcal{O}}^{\scriptscriptstyle \mathrm{PT}} = 2\pi T \left(1 + p_2^{\scriptscriptstyle \mathrm{PT}} g^2\right)$$

where $p_2^{\rm PT}=0.03274$. In particular m_P and m_V are degenerate

NP Results can be fitted by a quartic polynomial in

$$\frac{1}{\hat{g}^2(T)}\!\equiv\!\frac{9}{8\pi^2}\ln\!\frac{2\pi T}{\Lambda_{\overline{\rm MS}}}+\frac{4}{9\pi^2}\ln\left(2\ln\!\frac{2\pi\,T}{\Lambda_{\overline{\rm MS}}}\!\right)$$

where for our purpose this is a funct. of T designed to coincide with the $\overline{\rm MS}$ inverse coupling squared

Results for mesonic screening masses

• Effective theory + NLO matching predict

$$m_{\mathcal{O}}^{\scriptscriptstyle \mathrm{PT}} = 2\pi T \left(1 + p_2^{\scriptscriptstyle \mathrm{PT}} g^2\right)$$

where $p_2^{\rm PT}=0.03274$. In particular m_P and m_V are degenerate

NP Results can be fitted by a quartic polynomial in

$$\frac{1}{\hat{g}^2(T)} \equiv \frac{9}{8\pi^2} \ln\!\frac{2\pi T}{\Lambda_{\overline{\rm MS}}} + \frac{4}{9\pi^2} \ln\left(2 \ln\!\frac{2\pi T}{\Lambda_{\overline{\rm MS}}}\!\right)$$

where for our purpose this is a funct. of T designed to coincide with the $\overline{\rm MS}$ inverse coupling squared

Masses non-degenerate even at electroweak scale!

Results for baryonic (nucleon) screening mass

Effective theory + NLO matching predict

$$m_{N^+}^{\rm PT} = 3\pi T \left(1 + q_2^{\rm PT} g^2\right)$$

where $q_2^{PT} = 0.046$.

[Talk by D. Laudicina in this session at 3:35 p.m.]

NP Results can be fitted by a quartic polynomial in

$$\frac{1}{\hat{g}^2(T)} \equiv \frac{9}{8\pi^2} \ln\!\frac{2\pi T}{\Lambda_{\overline{\rm MS}}} + \frac{4}{9\pi^2} \ln\left(2\ln\!\frac{2\pi\,T}{\Lambda_{\overline{\rm MS}}}\right)$$

where for our purpose this is a funct. of T designed to coincide with the $\overline{\rm MS}$ inverse coupling squared

• PT within 0.5% down to $T \sim 5$ GeV, but curvature needed!

$N_f = 3$ QCD Equation of State up to very high T

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

- For computational strategy, results and data analysis see:
 - * M. Pepe next talk
 - * M. Bresciani next-to-next talk

Conclusions and Outlook

- With today HPC technology and known algorithms is possible to simulate thermal QCD up to very high temperatures
- Systematics due to the use of perturbation theory can be fully removed up to the electroweak scale
- The strategy proposed here opens the way to study many properties of thermal QCD in the high temperature regime:
 - ★ Screening masses of mesons and baryons [Talk by D. Laudicina in this session at 3:35 p.m.]
 - ★ Equation of State [Next two talks in this session by M. Pepe and M. Bresciani]
 - **★** Transport coefficients

*****

BACKUP SLIDES

Effective field theories at large T: MQCD

• For Physics at energies $E = O(g_{\rm E}^2)$, the scalar field can be integrated out, and one is left with Magnetostatic QCD (MQCD)

$$S_{\mathrm{MQCD}} = \frac{1}{g_{\scriptscriptstyle \mathrm{E}}^2} \int d^3x \left\{ \frac{1}{2} \operatorname{Tr} \left[F_{ij} F_{ij} \right] \right\} + \dots$$

- This is a 3D Yang–Mills theory which needs to be solved NP. All dimensionful quantities proportional to appropriate power of g_E^2
- As a result, at asymptotically high T the mass gap developed by thermal QCD is proportional to $g_{\scriptscriptstyle\rm E}^2=g^2T+\dots$
- Quarks have very heavy masses $M = \pi T (1 + \frac{g^2}{6\pi^2} + \dots)$, and can be considered, in first approximation, as static fields

Effective field theories at large T: EQCD

ullet Physics at energies $E \ll \pi T$ is described by a 3-dimensional effective gauge theory dubbed Electrostatic QCD (EQCD)

$$S_{\text{EQCD}} = \frac{1}{g_{\text{E}}^2} \int d^3x \left\{ \frac{1}{2} \operatorname{Tr} \left[F_{ij} F_{ij} \right] + \operatorname{Tr} \left[(D_j A_0)(D_j A_0) \right] + m_{\text{E}}^2 \operatorname{Tr} \left[A_0^2 \right] \right\} + \dots$$
where the fields are the Matsubara zero-modes of 4D gauge field

- The 4D temporal component A_0 behaves as a 3D scalar field of mass $m_{\text{\tiny E}}$ in the adjoint representation of the gauge group
- When the QCD coupling g^2 is small, perturbative matching gives

$$m_{\rm E}^2 = \frac{3}{2}g^2T^2 + \dots$$
 and $g_{\rm E}^2 = g^2T + \dots$

and at asymptotically hight T, three energy scales develop

$$\frac{g_{\rm E}^2}{\pi} \ll m_{\rm E} \ll \pi T$$

Screening mass definition

From the two-point correlators $[\mathcal{O} = \{S, P, V_{\mu}, A_{\mu}\}]$

$$C_{\mathcal{O}}(x_3) = a^3 \sum_{x_0, x_1, x_2} \langle \mathcal{O}^a(x) \mathcal{O}^a(0) \rangle$$

screening masses are defined as

$$am_{\mathcal{O}}(x_3) = \operatorname{arcosh}\left[\frac{C_{\mathcal{O}}(x_3+a) + C_{\mathcal{O}}(x_3-a)}{2 C_{\mathcal{O}}(x_3)}\right]$$

Meson masses: continuum limit

The tree-level improved definitions

$$\textit{m}_{\mathcal{O}} \rightarrow \textit{m}_{\mathcal{O}} - \left[\textit{m}_{\mathcal{O}}^{\mathrm{free}} - 2\pi\,\textit{T}\right]$$

have been extrapolated to the continuum linearly in $(a/L_0)^2$

Meson masses: discussion and interpretation

Pseudoscalar mass:

$$rac{m_P}{2\pi\,T} = 1 + p_2^{\scriptscriptstyle {
m PT}}\,\hat{g}^2 + p_3\,\hat{g}^3 + p_4\,\hat{g}^4$$
 $p_3{=}0.0038(22)$ and $p_4{=}{-}0.0161(17)$

Pseudoscalar-vector mass difference:

$$\frac{\left(m_V-m_P\right)}{2\pi T}=s_4\,\hat{g}^4$$

$$s_4 = 0.00704(14)$$

An effective \hat{g}^4 term explain the difference with PT in both cases over 2 orders of magnitude in T!

Comparison with the literature for mesons

