

Non-perturbative thermal QCD at very high temperatures

Leonardo Giusti

University of Milano-Bicocca & INFN

Collaboration:

Bresciani, Dalla Brida, LG, Harris, Laudicina, Pepe, Rescigno, JHEP 04 (2022) 034 [2112.05427], PLB 855 (2024) 138799 [2405.04182], and in preparation

Lattice 2024 - Liverpool - July 28th - August 3rd, 2024

Outline

- Non-perturbative (NP) thermal QCD up to very high T: why ?
- Renormalization and shifted boundary conditions: how ?
- Lattice setup
- Results for mesonic and baryonic screening masses [Talk by D. Laudicina in this session at 3:35 p.m.]
- Preliminary results for the Equation of State [Next two talks in this session by M. Pepe and M. Bresciani]
- Conclusions and Outlook

Thermal QCD: relevant scales and effective theories

[Ginsparg 80; Linde 80; Appelquist, Pisarski 81; Braaten, Nieto 96; . . .]

- The three relevant scales in the problem are:
	- $M = \pi T + \dots$ Fermions [3D NRQCD] and non-zero Matsubara gluon modes
	- $m_{\text{\tiny E}} \propto gT + \dotsb$ A_0 zero Matsubara gluon modes [3D EQCD]

 $g_{_{\rm E}}^2=g^2\,T+\ldots\,$ A_i zero Matsubara gluon modes [3D MQCD]

• Thanks to asymptotic freedom, at asymptotically high T a hierarchy between the three scales is generated

$$
\frac{g_{\rm E}^2}{\pi} \ll m_{\rm E} \ll \pi \, \mathcal{T} \qquad \Longleftrightarrow \qquad \left(\frac{g}{\pi}\right)^2 \ll \frac{g}{\pi} \ll 1
$$

- Perturbation theory developed for high T regime [See Laine, Vuorinen 17 for a review]
- Contributions from lowest scale must always be computed NP

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

[Kajantie et al. 02; LG, Pepe 17]

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

[Kajantie et al. 02; LG, Pepe 17]

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

• For the $SU(3)$ YM theory, if we (assume convergence and) fit the 4 highest temperatures by including an effective (NP) term

$$
\frac{s(\mathcal{T})}{\mathcal{T}^3} = \frac{32\pi^2}{45}\left\{1+s_2\hat{g}^2+s_3\hat{g}^3+s_4(\hat{g})\hat{g}^4+s_5\hat{g}^5+s_6(\hat{g})\hat{g}^6+\frac{q_c}{(2\pi)^6}\hat{g}^6\right\}
$$

the $\mathcal{O}(\hat{g}^6)$ is still \sim 50% of the total contribution from interactions at $T = 231 T_c \sim 68$ GeV ($\hat{g}/\pi \sim 0.3$). More sophisticated PT intensively studied in the literature $3/11$

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

0 1 2 3 \hat{g}^2 4 5 6 $\sqrt{2}$ 8 s/ T3 $O(g²)$ 2) $O(\hat{g}^3)$) de 4 \sim ^OG_S s, \sim) $O(6)$) fit $\sim q_c \ddot{g}^6$ - 2518(16) $230 T_c 20 T_c 5 T_c$ $\overline{\mathsf{SU(3)}}$ Y $O(\hat{g}^6)$ + data Giusti, Pepe 2017

• All these facts call for a non-perturbative study of thermal QCD up to very high T to identify the origin and the magnitude of the various contributions with controlled and improvable errors

[Kajantie et al. 02; LG, Pepe 17]

Renormalization I (lines of constant Physics)

• Hadronic renormalization scheme is not a viable option because

 $M_{\text{hadron}} \ll T$

Accommodating 2 very different scales on a lattice too expensive

- Way to go is the NP renormalization of the coupling:
	- \star Define the renormalized g^2 NP, e.g. SF (GF) couplings $(L = L_0)$

$$
\left.\frac{\partial\Gamma}{\partial\eta}\right|_{\eta=0}\equiv\frac{12\pi}{\bar{\mathbf{g}}_{\mathrm{SF}}^2(\mu)}\,,\quad \mu=\frac{1}{L_0}
$$

where C and C' depend on η , and $\Gamma = -\ln[Z]$

 \star Define quark masses NP by WIs

[Lüscher et al 91]

Renormalization II

- \bullet Relate $g^2(\mu_{\text{hadron}})$ to M_{hadron} NP
- Determine running of $g^2(\mu)$ NP
- Compute $g^2(\mu)$ for values of μ up to the electroweak scale
- For each value of T , renormalize thermal QCD by requiring

$$
g_{\rm SF}^2(g_0^2,a\mu)=\bar{g}_{\rm SF}^2(\mu)
$$

with $a\mu \ll 1$ and $\mu = \mathcal{T}\sqrt{2}$

• Last condition fixes the dependence of the bare g_0^2 on a, for values of a at which μ and T can be easily accommodated

Shifted boundary conditions

• By adopting shifted boundary conditions

[Meyer, LG 11-13]

$$
U_{\mu}(x_0+L_0, \mathbf{x}) = U_{\mu}(x_0, \mathbf{x}-L_0\xi)
$$

\n
$$
\psi(x_0+L_0, \mathbf{x}) = -\psi(x_0, \mathbf{x}-L_0\xi)
$$

\n
$$
\overline{\psi}(x_0+L_0, \mathbf{x}) = -\overline{\psi}(x_0, \mathbf{x}-L_0\xi)
$$

the entropy density can be computed as

$$
s=-\frac{L_0\,(1+\bar\xi^2)^{3/2}}{\xi_k}\,\langle\,T_{0k}\rangle_{\bar\xi}
$$

and the zero-temperature subtraction is avoided in the EoS

Systematics: topology and finite-size effects

• At very high temperature the topological charge distribution is expected to be highly peaked at zero $[b \sim 9$ for $N_f = 3]$

$$
P_{\nu} = \frac{1}{\sqrt{2\pi} < \nu^2>} e^{-\frac{\nu^2}{2 < \nu^2>} } + \dots, \quad <\nu^2>\propto L^3 m^3 T^{-b}
$$

• The contributions from non-zero topological sectors to observables

$$
\langle \mathcal{O} \rangle = \sum_{\nu} P_{\nu} \langle \mathcal{O} \rangle_{\nu}
$$

are negligible within statistical errors for the volumes considered. Simulations can be safely restricted to the zero topology sector.

- At asymptotically high T thermal QCD has a mass gap proportional to $g_{\scriptscriptstyle\rm E}^2 = g^2\,T + \ldots$
- Finite size effects are exponentially small in g^2TL , and can be made negligible within errors in large enough volumes

Lattice setup

- Wilson (T_0-T_8) and Lüscher–Weisz (T_9-T_{11}) actions for gluons
- NP $O(a)$ -improved Wilson quarks
- Four lattice spacings for each T , $L_0/a = 4, 6, 8$ and 10
- Shifted boundary conditions
- Restriction to zero topology

 T • The linear extension of spatial directions is $L/a = 288, 144$, i.e. gap. Explicitly checked at the highest and lowest temperature $10 < LT < 50$. Finite volume effects negligible given the mass

Results for mesonic screening masses

• Effective theory $+$ NLO matching predict

$$
m^{\rm PT}_{\mathcal{O}}=2\pi\,T\,(1+\rho^{\rm PT}_2g^2)
$$

where $p^{\rm \scriptscriptstyle PT}_2=$ 0.03274. In particular m_P and $m_{\rm \scriptscriptstyle V}$ are degenerate

• NP Results can be fitted by a quartic polynomial in

$$
\frac{1}{\hat{g}^2(\mathcal{T})} \equiv \frac{9}{8\pi^2} \ln \frac{2\pi \mathcal{T}}{\Lambda_{\overline{\rm MS}}} + \frac{4}{9\pi^2} \ln \left(2 \ln \frac{2\pi \mathcal{T}}{\Lambda_{\overline{\rm MS}}} \right)
$$

where for our purpose this is a funct. of T designed to coincide with the $\overline{\text{MS}}$ inverse coupling squared

Results for mesonic screening masses

• Effective theory $+$ NLO matching predict

$$
m^{\rm PT}_{\mathcal{O}}=2\pi\,T\,(1+\rho^{\rm PT}_2g^2)
$$

where $p^{\rm \scriptscriptstyle PT}_2=$ 0.03274. In particular m_P and $m_{\rm \scriptscriptstyle V}$ are degenerate

• NP Results can be fitted by a quartic polynomial in

$$
\frac{1}{\hat{g}^2(\mathcal{T})} \equiv \frac{9}{8\pi^2} \ln \frac{2\pi \mathcal{T}}{\Lambda_{\overline{\rm MS}}} + \frac{4}{9\pi^2} \ln \left(2 \ln \frac{2\pi \mathcal{T}}{\Lambda_{\overline{\rm MS}}} \right)
$$

where for our purpose this is a funct. of T designed to coincide with the $\overline{\text{MS}}$ inverse coupling squared

Results for baryonic (nucleon) screening mass

• Effective theory $+$ NLO matching predict

$$
m_{N^+}^{\rm PT} = 3\pi T (1 + q_2^{\rm PT} g^2)
$$

where $q_2^{\rm PT}$ [Talk by D. Laudicina in this session at 3:35 p.m.]

• NP Results can be fitted by a quartic polynomial in

$$
\frac{1}{\hat{g}^2(\mathcal{T})} \equiv \frac{9}{8\pi^2} \ln \frac{2\pi \mathcal{T}}{\Lambda_{\overline{\mathrm{MS}}}} + \frac{4}{9\pi^2} \ln \left(2 \ln \frac{2\pi \mathcal{T}}{\Lambda_{\overline{\mathrm{MS}}}} \right)
$$

where for our purpose this is a funct. of T designed to coincide with the $\overline{\text{MS}}$ inverse coupling squared

• PT within 0.5% down to $T \sim 5$ GeV, but curvature needed!

$N_f = 3$ QCD Equation of State up to very high T

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order

- For computational strategy, results and data analysis see:
	- \star M. Pepe next talk
	- \star M. Bresciani next-to-next talk

Conclusions and Outlook

- With today HPC technology and known algorithms is possible to simulate thermal QCD up to very high temperatures
- Systematics due to the use of perturbation theory can be fully removed up to the electroweak scale
- The strategy proposed here opens the way to study many properties of thermal QCD in the high temperature regime:
	- \star Screening masses of mesons and baryons [Talk by D. Laudicina in this session at 3:35 p.m.]
	- \star Equation of State

[Next two talks in this session by M. Pepe and M. Bresciani]

 \star Transport coefficients

BACKUP SLIDES

Effective field theories at large T : MQCD

• For Physics at energies $E = O(g_{\rm E}^2)$, the scalar field can be integrated out, and one is left with Magnetostatic QCD (MQCD)

$$
\mathcal{S}_{\text{MQCD}} = \frac{1}{g_{\text{E}}^2} \int d^3x \left\{ \frac{1}{2} \mathsf{Tr} \left[F_{ij} F_{ij} \right] \right\} + \dots
$$

- This is a 3D Yang–Mills theory which needs to be solved NP. All dimensionful quantities proportional to appropriate power of $g_{_{\rm E}}^2$
- As a result, at asymptotically high T the mass gap developed by thermal QCD is proportional to $g_{\rm E}^2 = g^2 T + \dots$
- \bullet Quarks have very heavy masses $M = \pi\, \mathcal{T} (1 + \frac{g^2}{6\pi^2} + \dots)$, and can be considered, in first approximation, as static fields

Effective field theories at large $T: EQCD$

• Physics at energies $E \ll \pi T$ is described by a 3-dimensional effective gauge theory dubbed Electrostatic QCD (EQCD)

$$
\mathcal{S}_{\text{EQCD}}\!\!=\!\!\frac{1}{\mathcal{g}_{\text{\tiny E}}^2}\int d^3x \left\{\frac{1}{2}\mathop{\mathsf{Tr}}\nolimits\left[F_{ij}F_{ij}\right]+\mathop{\mathsf{Tr}}\nolimits\left[(D_jA_0)(D_jA_0)\right]+\mathit{m}^2_{\text{\tiny E}}\mathop{\mathsf{Tr}}\nolimits\left[A_0^2\right]\right\}+\dots
$$

where the fields are the Matsubara zero-modes of 4D gauge field

- The 4D temporal component A_0 behaves as a 3D scalar field of mass $m_{_{\rm E}}$ in the adjoint representation of the gauge group
- When the QCD coupling g^2 is small, perturbative matching gives

$$
m_{\rm E}^2 = \frac{3}{2}g^2T^2 + \dots
$$
 and $g_{\rm E}^2 = g^2T + \dots$

and at asymptotically hight T, three energy scales develop

$$
\frac{g_{_{\rm E}}^2}{\pi} \ll m_{_{\rm E}} \ll \pi T
$$

Screening mass definition

From the two-point correlators $[O = \{S, P, V_\mu, A_\mu\}]$

$$
C_{\mathcal{O}}(x_3) = a^3 \sum_{x_0, x_1, x_2} \langle \mathcal{O}^a(x) \mathcal{O}^a(0) \rangle
$$

screening masses are defined as

$$
am_{\mathcal{O}}(x_3) = \operatorname{arcosh}\left[\frac{C_{\mathcal{O}}(x_3+a) + C_{\mathcal{O}}(x_3-a)}{2 C_{\mathcal{O}}(x_3)}\right]
$$

Meson masses: continuum limit

The tree-level improved definitions

$$
m_{\mathcal{O}} \rightarrow m_{\mathcal{O}} - \left[m^{\rm free}_{\mathcal{O}} - 2\pi T\right]
$$

have been extrapolated to the continuum linearly in $(a/L_0)^2$

Meson masses: discussion and interpretation

Pseudoscalar mass:

$$
\frac{m_P}{2\pi\,T} = 1 + \rho_2^{\rm PT} \, \hat{g}^2 + \rho_3 \, \hat{g}^3 + \rho_4 \, \hat{g}^4
$$

$$
p_3=0.0038(22)
$$
 and $p_4=-0.0161(17)$

Pseudoscalar-vector mass difference:

$$
\frac{(m_V - m_P)}{2\pi T} = s_4 \hat{g}^4
$$

$$
s_4 = 0.00704(14)
$$

An effective \hat{g}^4 term explain the difference with PT in both cases over 2 orders of magnitude in T!

Comparison with the literature for mesons

