Motivation 00 H in the thermal theory with SBC 000

 $\begin{array}{c} {\rm Computation \ of \ the \ LH} \\ {\rm 0000000} \end{array}$

Conclusions 000

Computation of the latent heat of the deconfinement phase transition of SU(3) Yang-Mills theory

<u>Luca Virzi^{1, 2}</u> L. Giusti^{1, 2} M. Hirasawa^{1, 2} M. Pepe²

University of Milan-Bicocca¹, INFN - Milano-Bicocca²

August 2nd, Lattice 2024 - University of Liverpool

1 Motivation

2 Definition of the latent heat in the thermal theory

3 Computation of the latent heat

Motivation	
••	

Computation of the LH 0000000

Outline

2 Definition of the latent heat in the thermal theory

3 Computation of the latent heat

	LH in the thermal theory with SBC 0000	Computation of the LH 0000000	Conclusions 000
N			

• SU(3) Yang-Mills theory undergoes a first order deconfining phase transition, associated with the spontaneous breaking of Z₃ center symmetry.

NIOLIVALION

• Convenient framework: thermal field theory with shifted boundary conditions allows us to carry out Monte Carlo simulations exactly at the critical point T_c to evaluate L_H .

Motivation	

LH in the thermal theory with SBC $\bullet 000$

Computation of the LH 0000000

Conclusions 000

Outline

1 Motivation

2 Definition of the latent heat in the thermal theory

3 Computation of the latent heat

Motivation 00 LH in the thermal theory with SBC 000

Computation of the LH $_{\rm OOOOOOO}$

Conclusions 000

Thermal theory with shifted boundary conditions

Consider SU(3) Yang-Mills on a $L^3 \times L_0$ lattice, described by the Wilson action:

$$S[U] = -\frac{\beta}{6} \sum_{x,\mu\nu} \operatorname{Re} \operatorname{Tr} U_{\mu\nu}(x) \text{ with: } \beta = 1/g_0^2$$

with shifted boundary conditions for gauge links: [L.Giusti, 14:30]

In the thermodynamic limit, the continuum theory is invariant under Poincaré transformations: [Giusti and Meyer, 2011-13]

$$f(L_0,\boldsymbol{\xi}) = f\left(L_0\sqrt{1+\boldsymbol{\xi}^2}, \boldsymbol{0}\right)$$

Motivation			Computation of the LH	Conclusions
00			0000000	000

Latent heat definition

The previous relation implies interesting Ward Identities, valid also on the lattice up to discretization errors. For instance for the entropy density [Giusti and Pepe, 2017]:

$$\frac{s(T)}{T^3} = -\frac{(1+\boldsymbol{\xi}^2)}{\xi_k} \frac{\langle T_{0k} \rangle_{\boldsymbol{\xi}}}{T^4} Z_T(g_0^2)$$

hence the latent heat is given by:

$$L_H = \frac{\Delta \varepsilon}{T_c^4} = \frac{\Delta s}{T_c^3} = -\frac{(1+\boldsymbol{\xi}^2)}{\xi_k} \frac{\Delta \langle T_{0k} \rangle_{\boldsymbol{\xi}}}{T_c^4} Z_T(g_{0\text{crit}}^2)$$

where:

$$\Delta s = s_d(T_c) - s_c(T_c)$$
$$\Delta \langle T_{0k} \rangle_{\boldsymbol{\xi}} = \langle T_{0k} \rangle_{\boldsymbol{\xi},d} - \langle T_{0k} \rangle_{\boldsymbol{\xi},c}$$

Motivation	

Outline

1 Motivation

2 Definition of the latent heat in the thermal theory

3 Computation of the latent heat

Motivation 00

Computation of the LH $_{\odot \odot \odot \odot \odot \odot \odot}$

Conclusions 000

Location of the transition

The transition point T_c can be determined in different ways, which are equivalent in the thermodynamic and continuum limit.

- Phase coexistence: at the transition point the probability of finding the system in either phase is the same. [Francis et al., 2015]
- The Polyakov Loop Φ is an order parameter for the breaking of the Z₃ symmetry.

Motivation 00

Computation of the LH 000000

Conclusions

Location of the transition

The probability of finding the system in one phase is given by:

$$\begin{split} w_c(\beta,L) &= \langle \theta(\Phi_c-\Phi) \rangle \\ w_d(\beta,L) &= \langle \theta(\Phi-\Phi_c) \rangle \\ \beta &= \beta_c \Leftrightarrow 3w_c = w_d \end{split}$$

where Φ_c is the local minimum between the two peaks, and in the infinite volume limit it helps us define β_c unambiguously.

LH in the	theory	SBC	Computa
			0000000

In order to find $\beta_c(L)$:

$$d(\beta, L) = \frac{3w_c - w_d}{3w_c + w_d}$$
$$d(\beta, L) = 0 \Leftrightarrow \beta = \beta_c(L)$$

then the critical coupling is:

 $\beta_c = \lim_{L \to \infty} \beta_c(L)$

We investigated lattices with $(L_0/a) = 5, 6, 7$ and 8.

tion of the LH

Critical coupling β_c in the infinite volume limit $(L_0/a = 8)$

Computation of the LH $_{\rm OOOOOOO}$

Motivation 00 H in the thermal theory with SBC

Monte Carlo History of Re Φ ($L_0/a = 6, L/a = 288$)

- Simulations are run at $T = T_c$ on large spatial volumes $(L/L_0 \sim 30 50)$ in each phase, tunneling events are suppressed.
- $\Delta \langle T_{0k} \rangle$ has a 2 3‰ precision, but the final uncertainty on s/T^3 is also affected by the error on the renormalization constant (4 - 7%).

Computation of the LH 0000000

Preliminary results for s/T^3 and L_H show a linear behaviour in $(a/L_0)^2$, and in the continuum limit:

$$\frac{s_{hot}}{T^3} = 1.464(18)$$
$$\frac{s_{cold}}{T^3} = 0.294(5)$$

while for the latent heat we quote the preliminary result:

 $L_H = 1.171(16)$

which has a $\sim 3\sigma$ discrepancy with the latest result in literature. [Borsanyi et al., 2022]

Preliminary results for s/T^3 and L_H show a linear behaviour in $(a/L_0)^2$, and in the continuum limit:

$$\frac{s_{hot}}{T^3} = 1.464(18)$$
$$\frac{s_{cold}}{T^3} = 0.294(5)$$

while for the latent heat we quote the preliminary result:

 $L_H = 1.171(16)$

which has a $\sim 3\sigma$ discrepancy with the latest result in literature. [Borsanyi et al., 2022]

Motivation	

Computation of the LH 0000000

 $\begin{array}{c} {\rm Conclusions}\\ {\scriptstyle ulletoo} {\scriptstyle OO \end{array}$

Outline

1 Motivation

2 Definition of the latent heat in the thermal theory

3 Computation of the latent heat

Motivation	LH in the thermal theory with SBC 0000	Computation of the LH	Conclusions
00		0000000	$0 \bullet 0$
Conclusion	5		

- Our estimate of $L_H = 1.171(16)$ has a ~ 1.3% precision, and this result currently produces a ~ 3σ tension with other values in literature.
- With complete simulations and an additional point for $(L_0/a) = 9$ the accuracy will further increase, and the aforementioned tension may be clarified.
- Thermal field theories with SBC have been proven to be a convenient numerical setup for the computation of the latent heat of the deconfinement phase transition in SU(3) Yang-Mills.

 $\underset{OO}{\operatorname{Motivation}}$

H in the thermal theory with SBC

Computation of the LH 0000000

 $\underset{\text{OO}}{\text{Conclusions}}$

thank you for your attention

Computation of the latent heat of the deconfinement phase transition of SU(3) Yang-Mills theory 13 / 13