QCD Topology, axions and electromagnetic fields

Helmholtz Graduate School for Hadron and Ion Research

Lattice 2024, Liverpool, 29th July 2024 B. B. Brandt, G. Endrődi, J. J. Hernández Hernández, G. Markó and L. Pannullo

Classification of gluon field configurations

Classification of gluon field configurations

Index theorem

Chirality + magnetic fields

Classification of gluon field configurations

Index theorem

Chirality + magnetic fields

Chiral Magnetic Effect (CME)

Classification of gluon field configurations

Intimately related to axions

$$\theta(x) \equiv \frac{a(x)}{f_a}$$

Classification of gluon field configurations

Intimately related to axions

$$\theta(x) \equiv \frac{a(x)}{f_a}$$

$Q_{top} \in \mathbb{Z}$

 $Q_{top} \in \mathbb{Z}$ $Q_{top} = N_R - N_L$

Index theorem

Outline

Topology with magnetic fields Topological susceptibility Topology with electromagnetic fields

Axion-photon coupling

What happens to Q_{top} ? \searrow S still CP symmetric, so $\langle Q_{top} \rangle (B) = 0$

Let's turn on a magnetic field!

It can couple to the magnetic field!

What happens to Q_{top} ? \longrightarrow S still CP symmetric, so $\langle Q_{top} \rangle (B) = 0$

But χ_{top} is CP symmetric...

Let's turn on a magnetic field!

But χ_{top} is CP symmetric...

It can couple to the magnetic field!

Perturbatively

ChPT [4]: $\chi_{top} \propto B^2$, for $eB \ll m_{\pi}^2$, T = 0

 $\chi_{top}(B) > \chi_{top}(0)$

What happens to Q_{top} ? $S still CP symmetric, so <math>\langle Q_{top} \rangle (B) = 0$

But χ_{top} is CP symmetric...

It can couple to the magnetic field!

Perturbatively

ChPT [4]: $\chi_{top} \propto B^2$, for $eB \ll m_{\pi}^2$, T = 0

 $\chi_{top}(B) > \chi_{top}(0)$

What happens to Q_{top} ? S = S = S = S Still CP symmetric, so $\langle Q_{top} \rangle (B) = 0$

Non-perturbatively + finite T

That's our goal!

Staggered quarks have no exact zero modes!

$$Q_{\rm top} = N_R - N_L$$

Index theorem

Staggered quarks have no exact zero modes!

To correct for it, we reweight $\det M$ by [1]

$$Q_{\rm top} = N_R - N_L$$

Index theorem

 $\prod_{f} \prod_{j=1}^{4|Q_{top}|} \prod_{\sigma=\pm} \left(\frac{m_f}{i\sigma\lambda_{f,j} + m_f} \right)^{n_f/4}$

Staggered quarks have no exact zero modes!

To correct for it, we reweight $\det M$ by [1]

Renormalisation of the gluon fields

$$Q_{\rm top} = N_R - N_L$$

Index theorem

 $\prod_{f} \prod_{j=1}^{4|Q_{top}|} \prod_{\sigma=\pm} \left(\frac{m_f}{i\sigma\lambda_{f,j} + m_f} \right)^{n_f/4}$

Wilson flow [7]

Staggered quarks have no exact zero modes!

To correct for it, we reweight $\det M$ by [1]

4|Qtop j=1

Renormalisation of the gluon fields

$$Q_{\rm top} = N_R - N_L$$

Index theorem

$$\left(\frac{m_f}{i\sigma\lambda_{f,j}+m_f}\right)^{n_f/4}$$

Wilson flow [7]

2+1 improved staggered quarks at the physical point

Topology on the lattice

 $T = 150 \,\mathrm{MeV}$

χ_{top} at finite magnetic field: low T

χ_{top} at finite magnetic field: low T

 $T = 112 \,\mathrm{MeV}$

So we will have $\langle Q_{top} \rangle (E,B) \neq 0!$

So we will have $\langle Q_{top} \rangle (E,B) \neq 0!$

Both Q_{top} and χ_{top} respond to E and B

Both Q_{top} and χ_{top} respond to E and B

For sufficiently weak EM fields

So we will have $\langle Q_{top} \rangle (E,B) \neq 0!$

Both Q_{top} and χ_{top} respond to E and B

For sufficiently weak EM fields

$Q_{\rm top} + Q_{EM} = N_R - N_L$

So we will have $\langle Q_{top} \rangle (E,B) \neq 0!$

$\langle Q_{\rm top} \rangle (E,B) \approx g \overrightarrow{E} \cdot \overrightarrow{B}$

 $\frac{\langle a \rangle}{f_a} + \theta = 0$

Axions couple to

 $G_{\mu
u} ilde{G}^{\mu
u}$

 $\frac{\langle a \rangle}{f_a} + \theta = 0$

Axions couple to

 $G_{\mu
u} ilde{G}^{\mu
u}$

 $\frac{\langle a \rangle}{f_a} + \theta = 0$

Axions couple to

 $F_{\mu
u} ilde{F}^{\mu
u}$

 $G_{\mu
u} ilde{G}^{\mu
u}$

a $\chi_{\rm top} = m_a^2 f_a^2$ $\theta \leftrightarrow$

Axions? Where?

 $\frac{\langle a \rangle}{f_a} + \theta = 0$

$\langle Q_{\rm top} \rangle (E,B) \approx g \overrightarrow{E} \cdot \overrightarrow{B}$

Axion-photon coupling!

Axions couple to

 $F_{\mu
u} ilde{F}^{\mu
u}$

 $G_{\mu
u} ilde{G}^{\mu
u}$

 \mathcal{A}

Axions? Where?

 $\frac{\langle a \rangle}{f_a} + \theta = 0$

 $g_{a\gamma\gamma}^{\text{model}} + g_{a\gamma\gamma}^{\text{QCD}}$ $\langle Q_{\rm top} \rangle (E,B) \approx g \vec{E} \cdot \vec{B}$

Axion-photon coupling!

 $\chi_{\text{top}} = m_a^2 f_a^2$ ChPT (NLO) [6]: $g_{a\gamma\gamma}^{\text{QCD}} f_a = -0.0243(5) e^2$

What about reweighting $g_{a\gamma\gamma}$?

We can also try to reweight $\det M$ for the coupling, but...

What about reweighting $g_{a\gamma\gamma}$?

We can also try to reweight $\det M$ for the coupling, but...

What about reweighting $g_{a\gamma\gamma}$?

Overlap problem!

We can also try to reweight $\det M$ for the coupling, but...

Solution?

What about reweighting g_{ayy} ?

Partial reweighting

We can also try to reweight det M for the coupling, but...

Solution?

Caveat: sometimes too many eigenvalues!

What about reweighting g_{ayy} ?

Partial reweighting

Approximate the reweighting factor: Lanczos quadrature

Effect of the partial reweighting

 $24^3 \times 32, T = 0$

$\partial_{\mu}J_{5}^{\mu} = 2m\bar{\psi}\gamma_{5}\psi + 2q_{top} + 2q_{em}$

$0 = mV_4\bar{\psi}\gamma_5\psi + Q_{\rm top} + Q_{em}$

$0 = mV_4 \langle \bar{\psi}\gamma_5\psi \rangle_0 + N_c \langle Q_{em} \rangle_0$

AWI with EM fields

$0 = mV_4 \langle \bar{\psi}\gamma_5 \psi \rangle_{EB} + \langle Q_{\rm top} \rangle_{EB} + N_c \langle Q_{em} \rangle_{EB}$

$0 = mV_4 \langle \bar{\psi}\gamma_5\psi \rangle_0 + N_c \langle Q_{em} \rangle_0$

AWI with EM fields

$0 = mV_4 \langle \bar{\psi}\gamma_5 \psi \rangle_{EB} + \langle Q_{\rm top} \rangle_{EB} + N_c \langle Q_{em} \rangle_{EB}$

 $g_{a\gamma\gamma}f_a/e^2 = \frac{\langle Q_{\rm top} \rangle_{EB}}{e^2 \vec{E} \cdot \vec{B}}$

 $g_{a\gamma\gamma}f_a/e^2 \propto \frac{\langle \bar{\psi}\gamma_5\psi \rangle_{EB}}{\langle \bar{\psi}\gamma_5\psi \rangle_0} - 1$

Free case

Summary

How EM fields affect topological observables

• First non-perturbative calculation of the axion-photon coupling

Investigate the reweighting (exact and approximate) and the AWI method for the axion-photon coupling

- \odot First non-perturbative calculation of the dependence of χ_{top} with the magnetic field at finite temperatures (publication coming soon!)

Outlook

Thank you for your attention

temperature lattice quantum chromodynamics. Nature 539, 69–71 (2016).

[2] Yao-Yuan Mao and Ting-Wai Chiu (TWQCD Collaboration). Topological susceptibility to the one-loop order in chiral perturbation theory. Phys. Rev. D 80, 034502 (2009).

[3] David J. Gross, Robert D. Pisarski, and Laurence G. Yaffe. QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981).

[4] Prabal Adhikari. Topological susceptibility in a uniform magnetic field. Phys. Lett. B 825, 136826 (2022).

[5] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D. Katz, and A. Schäfer. QCD quark condensate in external magnetic fields. Phys. Rev. D 86, 071502(R), (2012).

[6] Giovanni Grilli di Cortona, Edward Hardy, Javier Pardo Vega and Giovanni Villadoro. The <u>QCD axion, precisely</u>. JHEP 01 034, (2016).

[7] Martin Lüscher. Properties and uses of the Wilson flow in lattice QCD. JHEP 08 071 (2010) 21

References

[1] Borsanyi, S., Fodor, Z., Guenther, J. et al. Calculation of the axion mass based on high-

EM response of Q_{top}

 $40^3 \times 48$, T = 0

$T = 112 \,\mathrm{MeV}, eB = 0 \,\mathrm{GeV}^2$

Effect of the reweighing

$T = 112 \,\mathrm{MeV}, eB = 0.5 \,\mathrm{GeV}^2$

Window reweighting

But topological observables can be very sensitive!

But topological observables can be very sensitive!

To LO in ChPT [6]: $\frac{g_{a\gamma\gamma}^{\text{phys}}}{g_{a\gamma\gamma}^{\text{sym}}} = \frac{2}{5} \frac{m_u + 4m_d}{m_u + m_d} \approx 1.21$

But topological observables can be very sensitive!

To LO in ChPT [6]: $g_{a\gamma\gamma}^{\rm phys}$ $2 m_u + 4 m_d$ ≈ 1.21 σ^{sym} $8_{a\gamma\gamma}^{s\gamma m}$ 5 $m_u + m_d$

