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Introduction I

• The connection between deconfinement and chiral symmetry
restoration at the finite temperature QCD transition is still not
fully understood.

• Low Dirac modes could be key in understanding this
connection.

• Chiral symmetry breaking is controlled by the density ρ(λ) of
low modes according to the Banks-Casher relation∣∣⟨ψ̄(x)ψ(x)⟩∣∣ m→0

= πρ(0).

• Localization of low modes (up to a mobility edge λc) of the
Dirac operator was observed in QCD and other gauge theories
above the deconfinement transition [Giordano and Kovács, 2021]
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Introduction II

From Ref. [Ujfalusi et al., 2015]

• "Sea/islands” picture of localization: in the deconfined phase
modes get "trapped" on "islands" of

1 Polyakov-loop fluctuations [Bruckmann et al., 2011]

2 gauge field fluctuations that decrease correlations in the
temporal direction [Baranka and Giordano, 2022]

within the "sea" of ordered Polyakov loops.
• Only ordering of the Polyakov-loop is needed → localization of

low modes expected in a generic gauge theory
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Introduction III

• To test the "sea/islands" picture: check thermal transitions in
which the Polyakov-loop gets ordered other than the
deconfinement transition

• Another test of the "sea/islands" picture: changing the type
of dynamic matter

• Fixed length (λ→ ∞) SU(2)-Higgs model carries out both
tests [Baranka and Giordano, 2023]

S = −1
2

∑
n

[
β
∑
µ<ν

trUµν(n) + κ
∑
µ

trGµ(n)

]

Gµ(n) = ϕ(n)†Uµ(n)ϕ(n + µ)

Uµ(n): link variables (gauge field)
ϕ(n): site variables (scalar field represented by a SU(2) matrix)
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Mapping the phase diagram

Phase diagram was studied at zero temperature [Bonati et al., 2010] →
do it at finite temperature → Nt fixed, T = 1

Nta
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The structure of the phase diagram is the one expected from
T = 0 studies; we checked that the transitions are crossovers
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Sketch of phase diagram
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Spectral statistics I

• Localization and spectral statistics are connected
• Delocalized modes → strongly correlated under small changes

of the gauge field → RMT (Random Matrix theory) statistics
• Localized modes → uncorrelated under small changes of the

gauge field for large volumes → Poisson statistics

• Concentrate on the universal spectral statistical properties →
unfold the spectrum

si = (λi+1 − λi )ρ(λi )

• Distribution p(s) of unfolded spacings si :
• pRMT ≃ aβs

βe−bβs
2
, where β depends on the symmetry class

(β = 4 in our case)
• pPoisson = e−s
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Spectral statistics II

• Is0 =
∫ s0
0 p(s)ds measured locally in the spectrum is a

convenient observable to detect changes in the localization
properties

• The mobility edge λc is the transition point in the spectrum
between different statistical behaviors → the point where the
spectral statistics are volume-independent → determine the
crossing point for the various pairs of system sizes

• The critical value for Is0 is expected to be universal → once
the critical Is0 is determined, the mobility edge can be found
using just one volume
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Spectral statistics
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Participation ratio and fractal dimension

PRl =
1

NtN3
s

IPR−1
l , IPRl =

∑
n

∥ψl(n)∥4 ,

• PR = occupied volume
lattice volume

• PR · V ∼ Nα
s at large Ns , α the fractal dimension of modes

• α = 0 → Localized mode

• α = 3 → Delocalized mode
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Fractal dimension
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Disappearance of the mobility edge (Deconfined → Confined phase)

Fitted function:
λc = a(β − βc)

b

The mobility edge disappears in the transition region.
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Disappearance of the mobility edge (Higgs → Confined phase)

Fitted function:
λc = a(β − βc)

b

The mobility edge disappears in the transition region.
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Dependence of the mobility edge (Higgs → Deconfined phase)

Fitted function:

λc = a · (1 − σ(d · (κ− κc))) + (bκ+ c)σ(d · (κ− κc))

σ(x) =
1

1 + e−x

0.4 0.6 0.8 1.0
κ

0.25

0.26

0.27

0.28

0.29

0.30

0.31

λ
c

β = 2.6

1.50 1.75 2.00 2.25 2.50 2.75
β

0.0

0.2

0.4

0.6

0.8

1.0

1.2

κ

G susceptibility

0.10

0.15

0.20

0.25

0.30

0.35

0.40

György Baranka

Localization of Dirac modes in a finite temperature SU(2)-Higgs model 14 / 16



Conclusions

• Study of the relationship between localization and
Polyakov-loop ordering extended to a system with a dynamical
scalar field (SU(2)-Higgs theory)

• Phase diagram mapped at finite temperature
• "Sea/islands" picture is confirmed: works without regard to

1 type of dynamical matter
2 type of transition (the ordering of the Polyakov loop is enough)

• Possible extension:
1 study the localization properties of the covariant Laplacian

(was only studied at zero temperature [Greensite et al., 2005] )
2 detailed study of low β, large κ region of the phase diagram

[Greensite and Matsuyama, 2022]
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