

Electroweak correction to parity violating ep scattering

Reporter: Zhaolong Zhang

Collaborators: Xu Feng, Luchang Jin

2024.07.30

Experimental Background

$$Q_w^{\,p} = 1 - 4 sin^2 heta_w pprox 0.07$$

- An important standard model parameter
- Accidentally suppressed
- Sensitive to possible (SM, BSM) corrections

• PV ep scattering process

• Tree level diagram

Left-right hand asymmetry:

$$A^{\scriptscriptstyle PV}\!=\!rac{d\sigma_{\scriptscriptstyle R}-d\sigma_{\scriptscriptstyle L}}{d\sigma_{\scriptscriptstyle R}+d\sigma_{\scriptscriptstyle L}}$$

Extract Q_W^p through the ratio to tree level amplitude:

 $: \quad Q^{\,p}_W = \lim_{E \,
ightarrow \, 0} \lim_{Q^2 \,
ightarrow \, 0} rac{A^{PV}}{A_0}$

Experimental Background

Ongoing P2 experiment at Mainz¹ is targeting at precise measurement of Q_W^p

0.245 Q_W (p) NuTeV Q_W (e) Electron energy E < 155 MeVD. Androic et al. 0.24 P2@MESA Qwear (Qweak), Nature Moll Low energies ! **557**, 207–211 SOLID (2018). 0.235 Q_W (APV) LEP1 ATLAS eDIS Tevatron 0.23 SLD $\sin^2 \theta_W(Q)$ CMS 0.225 0.0001 0.001 0.01 0.1 100 1000 10000 10 Q [GeV] Low momentum transfer $Q^2 < 0.0045 GeV^2$ **Near forward scattering !** < 2 /14 >

¹D.Becker *et al , EPJA , 54, 208 (2018)*

Theoretical Background

• To compare the theory with experiment, one has to include electroweak corrections¹

¹J. Erler, A. Kurylov, and M. J. Ramsey-Musolf, PRD, 68, 016006

• Up to one-loop level electroweak correction, there're three kinds of non-trival diagrams

- Nonperturbative nature
- Dominate hadronic uncertainty

• We'd like to calculate the γZ box term $\Box_{\gamma Z}(E)$ in the near forward limit, and low electron energy scale: E < 155 MeV

• To evaluate the $\Box_{\gamma Z}(E)$ loop integral, we adopt the following procedure:

• Secondly, we split the contribution into SD and LD part, according to the time separation between two currents.

¹X. Feng, L. Jin, *PRD*.**100**.094509

• There's a special phenomenon in the IVR for this work¹: ¹X. Tuo, X. Feng, *arXiv*:2407.16930

• Possibly $E_{eX} < E_{init}$

When electron's energy E > 0: • Unphysical exponentially growing eX contribution

• Removing the unphysical eX contribution by IVR

- Thirdly, we utilize substitution method¹ to control large statistical error when $Q^2 \approx 0$.
- lattice zero momentum contribution accurate well known quantity •

Numerical check of the equation:

• .Using substitution method to improve the signal of $\Box_{\gamma Z}(E)$

- Electron energy E = 0MeV
- Clearer plateau
- Smaller statistical error

Preliminary numerical results

• We use two DWF ensembles with physical pion mass¹.

Ensemble	m_{π} [MeV]	L/a	T/a	a^{-1} [GeV]	$N_{\rm conf}$
$24\mathrm{D}$	142.6(3)	24	64	1.023(2)	207
32Dfine	143.6(9)	32	64	1.378(5)	69

¹T. Blum et al. (RBC, UKQCD), *PRD*, **93**, 074505

• To calculate the VVCS matrix element, we calculate the 4pt function (take one topology as an example):

Preliminary numerical results

- Result using: ($t_{sep} < t_s$ SD + $t_{sep} > t_s$ LD contribution) (IVR)
- Show the dependence of t_s and $\Delta t_i + \Delta t_f \longrightarrow$ Small excited states' contamination effects

24D ensemble

32Dfine ensemble

Preliminary numerical results

• Result of $\Box_{\gamma Z}(E)$ with $E = 0 \sim 155 MeV$, along with phenomenological result¹

The energy limit E<155MeV is constraint by possible exponential growing $N\pi$ states

¹J. Erler, M. Gorchtein, O. Koshchii, C.-Y. Seng, and H. Spiesberger, *Phys. Rev. D* **100**, 053007

Possible future prospect

• The restriction of leptonic energy may be loosed, by removing more low-lying excited states, such as nucleon-pion states, to work out this contribution ,we need to calculate following matrix element in little group:

$\langle p|J|\pi N \rangle$

• And we also have to carefully analyze the finite volume error when nucleon pion is an interacting two particle intermediate state1.

¹X. Tuo, X. Feng, *arXiv*:2407.16930, Talk: LT3, 15:15, 2th August

• Only axial γZ box is calculated in this work. However, vector box γZ also has a considerable contribution, and could also been evaluated in principle. But one has to deal with a IR divergence, which is absent in axial contribution.

Thank you for listening!