Supersymmetric QCD on the Lattice: Fine-tuning and Counterterms for the Yukawa and Quartic Couplings

M. Costa, H. Herodotou*, H. Panagopoulos

Department of Physics, University of Cyprus, POB 20537, 1678, Nicosia, Cyprus

30 July 2024

I	r	۱t	r	0	d	u	С	t	i	0	r
(D	0	С	C)(С					

Contents

Introduction

- Supersymmetric QCD on the Lattice
- Symmetries of the SQCD Action

Fine-tuning of the Yukawa Couplings in SQCD

- Introduction
- Renormalization of the Yukawa Couplings

3 Fine-tuning of the Quartic Couplings in SQCD

• Renormalization of the Quartic Couplings

Fine-tuning of the Yukawa Couplings in SQCD

Supersymmetric QCD on the Lattice

Supersymmetric QCD on the Lattice (1)

- $\bullet\,$ Study the strong interactions between the particles and their superpartners $^{1\ 2}$
- $\bullet\,$ Extend Wilson's formulation of the QCD action $\rightarrow\,$ superpartner fields 3 $^{4}\,$
- Standard discretization → quarks (ψ), squarks (A_±) and gluinos (λ) → on the lattice points whereas gluons (u_μ) → on the links between adjacent points:

$$U_{\mu}(x) = \exp[igaT^{lpha}u^{lpha}_{\mu}(x+a\hat{\mu}/2)]$$

- ² D. Schaich, PoS (LATTICE2018) 005
- ³ D. Schaich, Eur. Phys. J. ST 232 (2023) no.3, 305-320
- ⁴ G. Bergner and S. Catterall, Int. J. Mod. Phys. A 31 (2016) no.22, 1643005

¹ J. Giedt, Int. J. Mod. Phys. A24 (2009) 4045-4095

Fine-tuning of the Yukawa Couplings in SQCD

Supersymmetric QCD on the Lattice

Supersymmetric QCD on the Lattice (2)

 For Wilson-type quarks and gluinos, the Euclidean action S^L_{SQCD} on the lattice becomes ⁵:

$$\begin{split} \mathcal{S}_{\mathrm{SQCD}}^{L} &= \mathbf{a}^{4} \sum_{x} \Big[\frac{N_{c}}{g^{2}} \sum_{\mu,\nu} \left(1 - \frac{1}{N_{c}} \operatorname{Tr} U_{\mu\nu} \right) + \sum_{\mu} \operatorname{Tr} \left(\bar{\lambda} \gamma_{\mu} \mathcal{D}_{\mu} \lambda \right) - \mathbf{a} \frac{r}{2} \operatorname{Tr} \left(\bar{\lambda} \mathcal{D}^{2} \lambda \right) \\ &+ \sum_{\mu} \left(\mathcal{D}_{\mu} A_{+}^{\dagger} \mathcal{D}_{\mu} A_{+} + \mathcal{D}_{\mu} A_{-} \mathcal{D}_{\mu} A_{-}^{\dagger} + \bar{\psi} \gamma_{\mu} \mathcal{D}_{\mu} \psi \right) - \mathbf{a} \frac{r}{2} \bar{\psi} \mathcal{D}^{2} \psi \\ &+ i \sqrt{2} g \left(A_{+}^{\dagger} \bar{\lambda}^{\alpha} T^{\alpha} P_{+} \psi - \bar{\psi} P_{-} \lambda^{\alpha} T^{\alpha} A_{+} + A_{-} \bar{\lambda}^{\alpha} T^{\alpha} P_{-} \psi - \bar{\psi} P_{+} \lambda^{\alpha} T^{\alpha} A_{-}^{\dagger} \right) \\ &+ \frac{1}{2} g^{2} (A_{+}^{\dagger} T^{\alpha} A_{+} - A_{-} T^{\alpha} A_{-}^{\dagger})^{2} - m (\bar{\psi} \psi - m A_{+}^{\dagger} A_{+} - m A_{-} A_{-}^{\dagger}) \Big], \end{split}$$

•
$$P_{\pm} = (1 \pm \gamma_5)/2$$
 and $U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x + a\hat{\mu})U_{\mu}^{\dagger}(x + a\hat{\nu})U_{\nu}^{\dagger}(x)$

- $m \rightarrow$ the mass of the matter fields (which may be flavor-dependent)
- $\mathcal{D} \rightarrow$ the standard covariant derivative in the fundamental/adjoint representation 5
- $a \rightarrow$ lattice spacing, $r \rightarrow$ Wilson parameter, $N_c \rightarrow$ number of colors
- $T^{\alpha} \rightarrow$ generators of SU(N_c), $g \rightarrow$ coupling constant
- ⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Quartic Couplings in SQCD

Symmetries of the SQCD Action

Symmetries of the Supersymmetric QCD Action (1)

Parity (\mathcal{P}) :

$$\mathcal{P}: \begin{cases} U_0(x) \to U_0(x_{\mathcal{P}}), & U_k(x) \to U_k^{\dagger}(x_{\mathcal{P}} - a\hat{k}), & k = 1, 2, 3\\ \psi(x) \to \gamma_0 \psi(x_{\mathcal{P}}) & \\ \bar{\psi}(x) \to \bar{\psi}(x_{\mathcal{P}}) \gamma_0 & \\ \lambda^{\alpha}(x) \to \gamma_0 \lambda^{\alpha}(x_{\mathcal{P}}) & \\ \bar{\lambda}^{\alpha}(x) \to \bar{\lambda}^{\alpha}(x_{\mathcal{P}}) \gamma_0 & \\ A_{\pm}(x) \to A_{\mp}^{\dagger}(x_{\mathcal{P}}) & \\ A_{\pm}^{\dagger}(x) \to A_{\mp}(x_{\mathcal{P}}) & \end{cases}$$

where $x_P = (-x, x_0)$

Fine-tuning of the Quartic Couplings in SQCD

Symmetries of the SQCD Action

Symmetries of the Supersymmetric QCD Action (2)

• Charge conjugation (C):

$$\mathcal{C}: \left\{ \begin{array}{ll} U_{\mu}(x) \rightarrow U_{\mu}^{\star}(x) \,, & \mu = 0, 1, 2, 3 \\ \psi(x) \rightarrow -C \bar{\psi}(x)^{T} \\ \bar{\psi}(x) \rightarrow \psi(x)^{T} C^{\dagger} \\ \lambda(x) \rightarrow C \bar{\lambda}(x)^{T} \\ \bar{\lambda}(x) \rightarrow -\lambda(x)^{T} C^{\dagger} \\ A_{\pm}(x) \rightarrow A_{\mp}(x) \\ A_{\pm}^{\dagger}(x) \rightarrow A_{\mp}^{\dagger}(x) \end{array} \right.$$

• The matrix C satisfies: $(C\gamma_{\mu})^{T} = C\gamma_{\mu}$, $C^{T} = -C$ and $C^{\dagger}C = 1$

Symmetries of the SQCD Action

Symmetries of the Supersymmetric QCD Action (3)

 $U(1)_R$ which rotates the quark and gluino fields in opposite direction:

$$\mathcal{R}: \left\{ \begin{array}{l} \psi_f(x) \to e^{i\theta\gamma_5}\psi_f(x) \\ \bar{\psi}_f(x) \to \bar{\psi}_f(x)e^{i\theta\gamma_5} \\ \lambda(x) \to e^{-i\theta\gamma_5}\lambda(x) \\ \bar{\lambda}(x) \to \bar{\lambda}(x)e^{-i\theta\gamma_5} \end{array} \right.$$

 $U(1)_A$ which rotates the squark and the quark fields in the same direction as follows:

$$\chi: \begin{cases} \psi_f(x) \to e^{i\theta'\gamma_5}\psi_f(x) \\ \bar{\psi}_f(x) \to \bar{\psi}_f(x)e^{i\theta'\gamma_5} \\ A_{\pm}(x) \to e^{i\theta'}A_{\pm}(x) \\ A_{\pm}^{\dagger}(x) \to e^{-i\theta'}A_{\pm}^{\dagger}(x) \end{cases}$$

What do we calculate and why? (1)

- We calculate the renormalization factors of the Yukawa and quartic couplings of the $\mathcal{N}=1$ Supersymmetric QCD
- $\bullet\,$ Introduce the appropriate counterterms to the regularised Lagrangian \to the bare parameters 6
- Calculate perturbatively the relevant three-point and four-point Green's functions using both dimensional regularization (DR) in $D = 4 2\epsilon$ dimensions and lattice regularization (LR)

⁶ P. Athron and D. J. Miller, Phys. Rev. D 76 (2007), 075010

What do we calculate and why? (2)

- Lagrangian parameters of the classical action do not include quantum fluctuations
- Restore Supersymmetry in the continuum limit ^{7 8 9}
- Important ingredients in extracting nonperturbative information for supersymmetric theories through lattice simulations
- This work is a sequel to earlier investigations on SCQD and completes the one-loop fine-tuning of the SQCD action on the lattice \rightarrow paving the way for numerical simulations of SQCD ⁵ 10

- ⁹ S. Ali et al., Eur. Phys. J. C 78 (2018) 404
- ⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507
- ¹⁰ M. Costa and H. Panagopoulos, Phys. Rev. D 99 (2019) no.7, 074512

 $^{^{7}}$ G. Curci and G. Veneziano, Nucl. Phys. B292 (1987) 555

⁸ F. Farchioni et al., Eur. Phys. J. D 76 (2002), 719

Introduction

Coupling Constants of the Action of SQCD

- Bare coupling constants appearing in the lattice action are not typically all identical
- Gauge coupling $g \to$ gluons couple with quarks, squarks, gluinos and other gluons with the same gauge coupling constant
- Yukawa interactions and four-squark interactions contain a potentially different coupling constant \rightarrow must be fine-tuned on the lattice
- A similar situation holds for quark and squark masses ⁵

⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Yukawa Couplings

Computational Setup (1)

 Examine the behavior under *P* and *C* of all dimension-4 operators having one gluino, one quark and one squark field

Operators	\mathcal{C}	\mathcal{P}
$A_{+}^{\dagger}\bar{\lambda}P_{+}\psi$	$-\bar{\psi}P_+\lambda A^\dagger$	$A\bar{\lambda}P\psi$
$\bar{\psi}P_{-}\lambda A_{+}$	$-A\bar{\lambda}P\psi$	$\bar{\psi}P_+\lambda A^\dagger$
$A\bar{\lambda}P\psi$	$-\bar{\psi}P_{-}\lambda A_{+}$	$A_{+}^{\dagger}\bar{\lambda}P_{+}\psi$
$\bar{\psi}P_+\lambda A^\dagger$	$-A_{+}^{\dagger}\bar{\lambda}P_{+}\psi$	$\bar{\psi}P_{-}\lambda A_{+}$
$A_{+}^{\dagger}\bar{\lambda}P_{-}\psi$	$-\bar{\psi}P_{-}\lambda A_{-}^{\dagger}$	$A\bar{\lambda}P_+\psi$
$\bar{\psi}P_+\lambda A_+$	$-A\bar{\lambda}P_+\psi$	$\bar{\psi}P_{-}\lambda A_{-}^{\dagger}$
$A\bar{\lambda}P_+\psi$	$-\bar{\psi}P_+\lambda A_+$	$A_{+}^{\dagger}\bar{\lambda}P_{-}\psi$
$\bar{\psi}P_{-}\lambda A_{-}^{\dagger}$	$-A_{+}^{\dagger}\bar{\lambda}P_{-}\psi$	$\bar{\psi}P_+\lambda A_+$

Renormalization of the Yukawa Couplings

Computational Setup (2)

• Two linear combinations of Yukawa-type operators which are invariant under ${\cal P}$ and ${\cal C}:$

$$Y_{1} \equiv A_{+}^{\dagger} \bar{\lambda} P_{+} \psi - \bar{\psi} P_{-} \lambda A_{+} + A_{-} \bar{\lambda} P_{-} \psi - \bar{\psi} P_{+} \lambda A_{-}^{\dagger} \quad (1)$$

$$Y_2 \equiv A_+^{\dagger} \bar{\lambda} P_- \psi - \bar{\psi} P_+ \lambda A_+ + A_- \bar{\lambda} P_+ \psi - \bar{\psi} P_- \lambda A_-^{\dagger} \quad (2)$$

- All terms within each of the combinations in Eqs. (1) and (2) are multiplied by the same Yukawa coupling, g_{Y_1} and g_{Y_2} , respectively
- In the classical continuum limit: $g_{Y_1}
 ightarrow g$ and $g_{Y_2}
 ightarrow 0$

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Computational Setup (3)

- Compute, perturbatively, the relevant three-point Green's functions with external gluino-quark-squark fields
- Three one-loop Feynman diagrams that enter the computation of the three-point amputated Green's functions for the Yukawa couplings:

- Wavy (solid) line \rightarrow gluons (quarks)
- Dotted (dashed) line \rightarrow squarks (gluinos)
- An arrow entering (exiting) a vertex $\rightarrow \lambda, \psi, A_+, A_-^{\dagger}$ $(\bar{\lambda}, \bar{\psi}, A_+^{\dagger}, A_-)$ field

Introduction SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Yukawa Couplings

Computational Setup (4)

- We impose renormalization conditions → in the cancellation of divergences in the corresponding bare three-point amputated Green's functions with external gluino-quark-squark fields
- $\bullet\,$ The renormalization factors $\rightarrow\,$ to remove all divergences
- The application of the renormalization factors on the bare Green's functions → the renormalized Green's functions → independent of the regulator (ε in DR, a in LR) → renormalized Green's functions at a given scheme, but derived via different regularizations, should coincide

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factors of the Fields and the Coupling Constants

• The renormalization factors of the fields and the gauge coupling constant:

$$\psi \equiv \psi^B = Z_{\psi}^{-1/2} \, \psi^R, \tag{3}$$

$$u_{\mu} \equiv u_{\mu}^{B} = Z_{u}^{-1/2} u_{\mu}^{R}, \qquad (4)$$

$$\lambda \equiv \lambda^{B} = Z_{\lambda}^{-1/2} \, \lambda^{R}, \tag{5}$$

$$c \equiv c^B = Z_c^{-1/2} c^R, \tag{6}$$

$$g \equiv g^{B} = Z_{g}^{-1} \, \mu^{\epsilon} \, g^{R} \tag{7}$$

• The Yukawa coupling is renormalized as follows:

$$g_{Y_{1}} \equiv g_{Y_{1}}^{B} = Z_{Y_{1}}^{-1} Z_{g}^{-1} \mu^{\epsilon} g^{R}$$
(8)

• The definition of the renormalization mixing matrix for the squark fields:

$$\begin{pmatrix} A_{+}^{R} \\ A_{-}^{R\dagger} \end{pmatrix} = \begin{pmatrix} Z_{A}^{1/2} \end{pmatrix} \begin{pmatrix} A_{+}^{B} \\ A_{-}^{B\dagger} \end{pmatrix}$$
(9)

Renormalization of the Yukawa Couplings

Renormalization Condition in DR

- $\bullet~$ In the DR and $\overline{\rm MS}$ scheme this 2 \times 2 mixing matrix is diagonal^5
- Green's function in *DR* with external squark field $A_+ \rightarrow$ the renormalization condition:

$$\langle \lambda(q_1)A_+(q_3)\bar{\psi}(q_2)\rangle \Big|^{\overline{\mathrm{MS}}} = Z_{\psi}^{-1/2} Z_{\lambda}^{-1/2} (Z_A^{-1/2})_{++} \langle \lambda(q_1)A_+(q_3)\bar{\psi}(q_2)\rangle \Big|^{\mathrm{bare}}$$
(10)

- $\bullet\,$ In the right-hand side $\to\,$ all coupling constants $\to\,$ expressed in terms of their renormalized values
- $\bullet\,$ The left-hand side \to the $\overline{\rm MS}$ renormalized Green's function
- The other renormalization conditions which involve the external squark fields $A^{\dagger}_{+}, A_{-}, A^{\dagger}_{-}$ are similar

⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling in DR (1)

- $\bullet\,$ Have checked that no IR divergences will be generated $\to\,$ calculation of the corresponding diagrams by setting to zero one of the external momenta
- One-loop Green's function for the Yukawa coupling for zero gluino momentum in DR with external squark field A₊:

$$\begin{split} \langle \lambda^{\alpha_{1}}(0)\bar{\psi}(q_{2})A_{+}(q_{3})\rangle^{DR,1\text{loop}} &= -i\left(2\pi\right)^{4}\delta(q_{2}-q_{3})\frac{g_{Y}g^{2}}{16\pi^{2}}\frac{1}{4\sqrt{2}N_{c}}T^{\alpha_{1}}\times\\ &\left[-3(1+\gamma_{5})+((1+\alpha)(1+\gamma_{5})+8\gamma_{5}c_{\text{hv}})N_{c}^{2}\right.\\ &\left.+(1+\gamma_{5})(-\alpha+(3+2\alpha)N_{c}^{2})\left(\frac{1}{\epsilon}+\log\left(\frac{\bar{\mu}^{2}}{q_{2}^{2}}\right)\right)\right] \end{split}$$
(11)

• $c_{\rm hv} = 0,1$ for the naïve and 't Hooft-Veltman (HV) prescription of γ_5 , respectively ¹¹ ¹² and $\alpha \rightarrow$ gauge parameter

¹¹ M. S. Chanowitz et al., Nucl. Phys. B 159 (1979), 225-243
 ¹² G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 44 (1972), 189-213

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling in DR (2)

• Results of the renormalization factors in DR ⁵:

$$\begin{split} Z_{\psi}^{DR,\overline{\mathrm{MS}}} &= 1 + \frac{g^2 C_F}{16 \pi^2} \frac{1}{\epsilon} \left(1 + \alpha \right), \qquad Z_A^{DR,\overline{\mathrm{MS}}} = \left(1 + \frac{g^2 C_F}{16 \pi^2} \frac{1}{\epsilon} \left(-1 + \alpha \right) \right) \mathbb{1} \\ Z_{\lambda}^{DR,\overline{\mathrm{MS}}} &= 1 + \frac{g^2}{16 \pi^2} \frac{1}{\epsilon} \left(\alpha N_c + N_f \right), \quad Z_g^{DR,\overline{\mathrm{MS}}} = 1 + \frac{g^2}{16 \pi^2} \frac{1}{\epsilon} \left(\frac{3}{2} N_c - \frac{1}{2} N_f \right) \end{split}$$

- $C_F = (N_c^2 1)/(2 N_c) \rightarrow \text{Casimir operator and } N_f \rightarrow \text{number of flavors}$
- For all Green's functions and all choices of <u>the</u> external momenta which we consider, we obtain the same value of $Z_{Y_1}^{DR,MS}$ 13:

$$Z_{\gamma_1}^{DR,\overline{\text{MS}}} = 1 + \mathcal{O}(g^4) \tag{12}$$

• $Z_{\gamma_1}^{DR,\overline{\rm MS}} \to$ at the quantum-level, the renormalization process involving the Yukawa interaction is not affected by one-loop corrections

⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

 13 M. Costa, H. Herodotou and H. Panagopoulos, Phys. Rev. D 109 (2024) no.3, 035015

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Condition on the Lattice

- On the lattice the renormalization mixing matrix for the squark fields \rightarrow non diagonal \rightarrow the component $A_+(A_-)$ mixes with $A_-^{\dagger}(A_+^{\dagger})^{5}$
- The $\chi \times \mathcal{R}$ symmetry is broken
- Introducing mirror Yukawa counterterms in the action
- The renormalization condition is the following:

$$\begin{split} \left. \langle \lambda(q_1) A_+(q_3) \bar{\psi}(q_2) \rangle \right|^{\overline{\mathrm{MS}}} &= Z_{\psi}^{-1/2} Z_{\lambda}^{-1/2} \langle \lambda(q_1) \big((Z_A^{-1/2})_{++} A_+(q_3) \\ &+ (Z_A^{-1/2})_{+-} A_-^{\dagger}(q_3) \big) \bar{\psi}(q_2) \rangle \Big|^{\mathrm{bare}} \end{split}$$
(13)

• The bare coupling g_{Y_2} arises in the right hand side of the renormalization condition

⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling on the Lattice (1)

• The difference between the one-loop $\overline{\mathrm{MS}}$ -renormalized and bare lattice Green's functions for zero gluino momentum and with external squark field A_+ :

$$\begin{split} \langle \lambda^{\alpha_{1}}(0)A_{+}(q_{3})\bar{\psi}(q_{2})\rangle^{\overline{\mathrm{MS}},\mathrm{1loop}} &- \langle \lambda^{\alpha_{1}}(0)A_{+}(q_{3})\bar{\psi}(q_{2})\rangle^{LR,\mathrm{1loop}} \\ &= -i\left(2\pi\right)^{4}\delta(q_{2}-q_{3})\frac{g_{Y}g^{2}}{16\pi^{2}}\frac{1}{4\sqrt{2}N_{c}}T^{\alpha_{1}}\times \\ &\left[-3.7920\alpha(1+\gamma_{5})+(-3.6920+5.9510\gamma_{5}+7.5840\alpha(1+\gamma_{5})-8\gamma_{5}c_{\mathrm{hv}})N_{c}^{2}\right. \\ &\left.+(1+\gamma_{5})(\alpha-(3+2\alpha)N_{c}^{2})\log\left(a^{2}\bar{\mu}^{2}\right)\right] \end{split}$$
(14)

• Alternative choices of the external momenta give the same results for these differences

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling on the Lattice (2)

 By combining this difference and by recalling renormalization factors of fields and gauge coupling on the lattice → the renormalization factors ¹³:

$$Z_{Y_1}^{LR,\overline{\text{MS}}} = 1 + \frac{g^2}{16\pi^2} \left(\frac{1.45833}{N_c} + 2.40768N_c + 0.520616N_f \right)$$
(15)

$$g_{Y_2}^{LR,\overline{\rm MS}} = \frac{g^3}{16\,\pi^2} \left(\frac{-0.040580}{N_c} + 0.45134N_c\right) \tag{16}$$

• Gauge independent \to the $\overline{\rm MS}$ renormalization factors for gauge invariant objects are gauge-independent

• Finite

¹³ M. Costa, H. Herodotou and H. Panagopoulos, Phys. Rev. D 109 (2024) no.3, 035015

Renormalization of the Quartic Couplings

Computational Setup (1)

- Identify the four external squark fields → gauge symmetry constraints → two squarks to lie in the fundamental representation and the other two in the antifundamental
- Ten possibilities for choosing the 4 external squarks:

$$\begin{aligned} &(A_{+}^{\dagger}A_{+})(A_{+}^{\dagger}A_{+}), \quad (A_{-}A_{-}^{\dagger})(A_{-}A_{-}^{\dagger}), \\ &(A_{+}^{\dagger}A_{+})(A_{-}A_{-}^{\dagger}), \quad (A_{+}^{\dagger}A_{-}^{\dagger})(A_{+}^{\dagger}A_{-}^{\dagger}), \quad (A_{-}A_{+})(A_{-}A_{+}), \quad (A_{-}A_{+})(A_{+}^{\dagger}A_{-}^{\dagger}), \\ &(A_{+}^{\dagger}A_{+})(A_{+}^{\dagger}A_{-}^{\dagger}), \quad (A_{+}^{\dagger}A_{+})(A_{-}A_{+}), \quad (A_{-}A_{-}^{\dagger})(A_{+}^{\dagger}A_{-}^{\dagger}), \quad (A_{-}A_{-}^{\dagger})(A_{-}A_{+}) \end{aligned}$$

 $\bullet\,$ Pairs of squark fields in parenthesis $\to\,$ color-singlet combinations

Introduction Signature Fine-tuning of the Yukawa Couplings in SQCD Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (2)

- $\bullet\,$ Take into account ${\cal C}$ and ${\cal P}$ to construct combinations which are invariant under these symmetries
- There are five combinations ¹⁴:

Operators	С	\mathcal{P}
$\lambda_1 (A^{\dagger}_+ T^{lpha} A_+ + A T^{lpha} A^{\dagger})^2/2$	+	+
$\frac{1}{\lambda_2[(A_+^{\dagger}A^{\dagger})^2+(AA_+)^2]}$	+	+
$\lambda_3(A_+^\dagger A_+)(AA^\dagger)$	+	+
$\lambda_4(A_+^\dagger A^\dagger)(AA_+)$	+	+
$\overline{\lambda_5(A_+^{\dagger}A^{\dagger}+AA_+)(A_+^{\dagger}A_++AA^{\dagger})}$	+	+

• The tree-level values of λ_i which satisfy Supersymmetry are:

$$\lambda_1 = g^2, \ \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0 \tag{17}$$

¹⁴ B. Wellegehausen and A. Wipf, PoS LATTICE2018 (2018), 210

•

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (3)

۲ A solid rectangle \rightarrow the 4-squark vertex

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (4)

• A dotted (dashed) line \rightarrow squarks (gluinos)

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (5)

- A wavy (solid) line \rightarrow gluons (quarks)
- A dotted (dashed) line → squarks (gluinos)
- A solid rectangle \rightarrow the 4-squark vertex

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (6)

 Additional one-loop Feynman diagrams leading to the fine-tuning of the quartic couplings on the lattice:

- A wavy (solid) line \rightarrow gluons (quarks)
- A dotted (dashed) line \rightarrow squarks (gluinos)
- A "double dashed" line \rightarrow ghost field
- The solid box in diagram 27 ightarrow measure part of the lattice action

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Quartic Couplings

Renormalization Condition in DR

- Compute the diagrams by setting 2 external squark momenta of fields in the fundamental representation to zero
- The renormalization factor of the gauge parameter Z_{α} ⁵:

$$\alpha^R = Z_\alpha^{-1} \, Z_u \, \alpha^B \tag{18}$$

• The quartic coupling is renormalized as follows:

$$\lambda_1 = Z_{\lambda_1}^{-1} Z_g^{-2} \mu^{2\epsilon} \left(g^R \right)^2 \tag{19}$$

• Green's function in *DR* with external squark fields A_+ and $A_+^{\dagger} \rightarrow$ the renormalization condition:

$$\langle A_{+}(q_{1})A_{+}^{\dagger}(q_{2})A_{+}(q_{3})A_{+}^{\dagger}(q_{4})\rangle \Big|^{\overline{\mathrm{MS}}} =$$
 (20)

$$(Z_A^{-2})_{++}\langle A_+(q_1)A_+^{\dagger}(q_2)A_+(q_3)A_+^{\dagger}(q_4)
angle \Big|^{\mathrm{bare}}$$

- In the right-hand side all coupling constants and the gauge parameter \rightarrow expressed in terms of their renormalized values
- ⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Renormalization Factor of the Quartic Coupling in DR (1)

 \bullet The difference between the $\overline{\rm MS}\xspace$ -renormalized and the corresponding bare Green's function:

$$\langle A_{+f_{1}}^{\dagger \alpha_{1}}(q_{1})A_{+f_{2}}^{\dagger \alpha_{2}}(q_{2})A_{+f_{3}}^{\alpha_{3}}(q_{3})A_{+f_{4}}^{\alpha_{4}}(q_{4})\rangle^{\overline{\mathrm{MS}},\mathrm{1loop}} - \langle A_{+f_{1}}^{\dagger \alpha_{1}}(q_{1})A_{+f_{2}}^{\dagger \alpha_{2}}(q_{2})A_{+f_{3}}^{\alpha_{3}}(q_{3})A_{+f_{4}}^{\alpha_{4}}(q_{4})\rangle^{DR,\mathrm{1loop}}$$

$$= \frac{g^{4}}{64\pi^{2}N_{c}^{2}}\frac{1}{\epsilon} \left[\left(2 + 4N_{c}^{2} + \alpha\left(-2\alpha + 3\left(1 + \alpha\right)N_{c}^{2}\right) - 2N_{c}N_{f} \right) \times \left(\delta_{f_{1}f_{3}}\delta_{f_{2}f_{4}}(-\delta^{\alpha_{1}\alpha_{3}}\delta^{\alpha_{2}\alpha_{4}} + N_{c}\,\delta^{\alpha_{1}\alpha_{4}}\delta^{\alpha_{2}\alpha_{3}}) \right) \right.$$

$$+ \delta_{f_{1}f_{4}}\delta_{f_{2}f_{3}}(-\delta^{\alpha_{1}\alpha_{4}}\delta^{\alpha_{2}\alpha_{3}} + N_{c}\,\delta^{\alpha_{1}\alpha_{3}}\delta^{\alpha_{2}\alpha_{4}}) \right) \right]$$

$$(21)$$

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Renormalization Factor of the Quartic Coupling in DR (2)

• By utilizing the renormalization condition, the renormalization factors of the fields, the gauge coupling and the gauge parameter in DR, we obtain:

$$Z_{\lambda_1}^{DR,\overline{MS}} = 1 + \mathcal{O}(g^4)$$
(22)

- At the quantum level, the renormalization of the quartic coupling in DR remains unaffected by one-loop corrections
- Terms proportional to λ_2 λ_5 do not manifest in the $\overline{\rm MS}$ renormalization using DR

Renormalization of the Quartic Couplings

Summary - Conclusions

- The multiplicative renormalization of the Yukawa coupling and the coefficient of the mirror Yukawa counterterm on the lattice → finite and gauge independent
- At the quantum level, the renormalization of the quartic coupling in DR remains unaffected by one-loop corrections
- The renormalization of the quartic coupling on the lattice is **underway** \rightarrow a finite, but nontrivial renormalization for λ_1 , as well as nonzero finite couplings $\lambda_2 - \lambda_5$ for the corresponding counterterms

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Thank you!

Thank you for your attention!

The project (EXCELLENCE/0421/0025) is implemented under the programme of social cohesion "THALIA 2021-2027" co-funded by the European Union through the Research and Innovation Foundation (RIF). The results are generated within the FEDILA software (project: CONCEPT/0823/0052), which is also implemented under the same "THALIA 2021-2027" programme, co-funded by the European Union through RIF.