

The observable spectrum for GUT-like theories

Elizabeth Dobson • Axel Maas • Bernd Riederer University of Graz

41st Lattice conference • Liverpool, 31.07.2024

Spectroscopy

Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m

Gauge-invariant approach to grand unified theories

our approach

- subgroup depends on gauge choice
- different spectra possible
- nontrivial mapping to SM spectrum
- no assumption that BEH \implies low-energy

which assumptions carry over from SM pheno?

- what is the correspondence between bound states in the unbroken theory and SM observables?
- which GUT groups are plausible?

Elementary fields form an unphysical state space

nonabelian gauge group + local gauge-fixing condition:

no unique solutions beyond PT BRST insufficient to fix gauge

ξ-invariance ⇏ gauge invariance perturbative state space is gauge-dependent

elementary fields (and e.g. Higgs vev) are not reliable order parameters

can we work directly with composite states in perturbation theory instead?

Fröhlich–Morchio–Strocchi approach: composite states

boundstate-boundstate correspondence after gauge-fixing is nontrivial in general:

important for BSM model building!

Perturbation theory: "bound-state Higgs" vs 1 vector singlet

[here: SU(*N*) Yang–Mills with single fundamental scalar]

Perturbation theory: "bound-state Higgs" vs T vector singlet [here: SU(N) Yang-Mills with single fundamental scalar]	
\n <p>expand in choice of gauge with $\langle \varphi \rangle \neq 0$</p> \n <p>$\frac{\langle (\varphi t \varphi)(x)(\varphi t \varphi)(y) \rangle_c}{h(x) = 2 \text{ Re}[\hat{\pi}t \eta(x)]}$\n</p> \n	\n <p>...</p> \n <p< td=""></p<>

Gauge invariance qualitatively changes the PT spectrum

[Example: SU(*N*) Yang–Mills with single fundamental scalar]

Toy model to test FMS approach: $SU(3) + YM$ "GUT-like"*

Generalisation of SM gauge-weak sector

single scalar $\varphi \in SU(3)$ or $\varphi \in SU(3)$

Breaks to nontrivial gauge group
 $SU(3) \rightarrow SU(2)$ or $SU(2) \times U(1)$, $U(1) \times U(1)$

Nontrivial custodial group

global $U(1)$ or Z_2
 \bigodot **Similar Control Co** + YM "GUT-like"*

Generalisation of SM gauge-weak sector

single scalar $\varphi \in SU(3)$ or $\varphi \in SU(3)$

Breaks to nontrivial gauge group
 $SU(3) \rightarrow SU(2)$ or $SU(2) \times U(1)$, $U(1) \times U(1)$

Nontrivial custodial group

global U(1) or + YM "GUT-like"*

Generalisation of SM gauge-weak sector

single scalar $\varphi \in SU(3)$ or $\varphi \in SU(3)$

Breaks to nontrivial gauge group
 $SU(3) \rightarrow SU(2)$ or $SU(2) \times U(1)$, $U(1) \times U(1)$

Nontrivial custodial group

global U(1) or **Hart MCCONT**
 Breaks to nontrivial gauge-weak sector
 Breaks to nontrivial gauge group
 SU(3) \rightarrow **SU(2) or SU(2) × U(1)**, U(1) × U(1)
 Nontrivial custodial group
 Breaks to nontrivial gauge group
 SU(3) \rightarrow **S** $SU(3) \rightarrow SU(2)$ or $SU(2) \times U(1)$, $U(1) \times U(1)$

what is the stable spectrum?

are the lighter states charged?

do lattice results support FMS?

Constructing an operator basis in different channels

parity

 $-$ spin

Implementation details

Setup

-
- *∂S ∂φ x*
-

Smearing

Example mentation details

Setup

SU(3) + YM + single scalar

SU(3) + YM + single scalar

2D coupling space (β, κ, γ)

Stochastic OR

Heatbath + OR updates

Cabble--harian imethod

Cabble--harian imethod

Stout (link **EXECUTE:**
 Setup

SU(3) + YM + single scalar Landau't Hooft or Unitary Operator basis

SU(3) + YM + single scalar Landau't Hooft or Unitary on fixed timeslice

2D coupling space (β, κ, γ)

Stochastic OR momentum boo For a complementation details

For a complementation details

SU(3) + YM + single scalar Landau't Hooft or Unitary

3D coupling space (β, κ, γ)

Stochastic OR Stochastic OR

Heatbath + OR updates Smearing Stochastic OR
 Example mentation details
 Satup
 Satup

SU(3) + YM + single scalar
 $\frac{3D}{2}$ coupling space (β, κ, γ)
 Exaturation and the case: and the case: approx. However, and the state of a state of the case and the st **The Magnus Control of Control (1998)**

Hotel Comparison Capture Control of Unitary

(3) + YM + single scalar

(3) + YM + single scalar

(3) + YM + single scalar

(5) coupling space (β , κ , γ)

stochastic OR

sto Gauge fixing

Cauge fixing

Landau 't Hooft or Unitary

Stochastic OR

Stochastic OR

Smearing

Spectroscopy

Stout (links), APE (scalars)

Spectroscopy

variational analysis

fitting to plateaus of $C(t)$

scattering from **Gauge fixing Operator basis**

Landau 't Hooft or Unitary Operator basis

Stochastic OR momentum boosts

Stochastic OR momentum boosts

Smearing Spectroscopy

Stout (links), APE (scalars) Spectroscopy

variational analysi Solution of Section Analysis details

Variational analysis details

Variational analysis

Variational analysis

Variational analysis

Variational analysis

Variational analysis

Variational analysis

Variational analysis
 Solution (Scalars)

Stochastic OR

Spectroscopy

Stout (links), APE (scalars)

Spectroscopy

variational analysis

f Operator basis

on fixed timeslice

momentum boosts

Spectroscopy

variational analysis

fitting to plateaus of $C(t)$

scattering from stable states
 $V \rightarrow \infty$ extrapolation Operator basis

on fixed timeslice

momentum boosts

Spectroscopy

variational analysis

fitting to plateaus of $C(t)$

scattering from stable states
 $V \rightarrow \infty$ extrapolation Operator basis

on fixed timeslice

momentum boosts

Spectroscopy

variational analysis

fitting to plateaus of $C(t)$

scattering from stable states
 $V \rightarrow \infty$ extrapolation Spectroscopy Operator basis

on fixed timeslice

momentum boosts

Spectroscopy

variational analysis

fitting to plateaus of $C(t)$

scattering from stable states
 $V \rightarrow \infty$ extrapolation

8 Operator basis

on fixed timeslice

momentum boosts
 $f(x) = f(x) + f(x)$

Spectroscopy

variational analysis

fitting to plateaus of $C(t)$

scattering from stable states
 $V \rightarrow \infty$ extrapolation

8 Operator basis

on fixed timeslice

momentum boosts

Spectroscopy

variational analysis

fitting to plateaus of $C(t)$

scattering from stable states
 $V \rightarrow \infty$ extrapolation

8 *V* → ∞ extrapolation **Example mentation details**

Su(3) + YM + single scalar Landau't Hooft or Unitary Operator basis

SU(3) + YM + single scalar Landau't Hooft or Unitary Operator basis

3D coupling space (β, κ, γ) Stochastic OR momentum **Setup**

Setup

SU(3) + YM + single scalar Landau't Hooft or Unitary

3D coupling space (*β, κ, γ*)

3D coupling space (*β, κ, γ*)

Stochastic OR

Heatbath + OR updates Smearing

Cabibic-Marinari method

Stout (links), A **Setup**

Setup

SU(3) + YM + single scalar Landau't Hooft or Unitary

SU(3) + YM + single scalar Landau't Hooft or Unitary

3D coupling space (β, κ, γ)

Stochastic OR momentum boosts

Stochastic OR momentum boosts

Feat

Jenny, Maas and Riederer, arXiv:2204.02756 — fitting/variational analysis details 8

Features of the fundamental spectrum

Phase structure

clear indication of 2 phases: 4 apparent LCPs (2 for QL, 2 for HL) order of transition/crossover unclear

Features of the fundamental spectrum

Phase structure

Clear indication of 2 phases:

4 apparent LCPs (2 for QL, 2 for HL)

(apparent CPs (2 for QL, 2 for HL)

Strongly coupled scalars

order of transition/crossover uncle Features of the fundamental spectrum

Phase structure

clear indication of 2 phases:

4 apparent LCPs (2 for QL, 2 for HL)

order of transition/crossover unclear

Generic features

Ceneric features

Ceneric features

Cene Features of the fundamental spectrum

Phase structure

clear indication of 2 phases:

4 apparent LCPs (2 for QL, 2 for HL)

strongly coupled scalars

order of transition/crossover unclear

Generic features

Generic featur Features of the fundamental spectrum

Phase structure

clear indication of 2 phases:

4 apparent LCPs (2 for QL, 2 for HL)

order of transition/crossover unclear

Generic features

Ceneric features

Ceneric features

Cene Features of the fundamental spectrum

Phase structure

clear indication of 2 phases:

4 apparent LCPs (2 for QL, 2 for HL)

strongly coupled scalars

order of transition/crossover unclear

Generic features

Generic featu Features of the fundamental spectrum

Phase structure

clear indication of 2 phases:

4 apparent LCPs (2 for QL, 2 for HL)

order of transition/crossover unclear

Generic features

Ceneric features

Ceneric features

Cene Features of the fundamental spectrum

Phase structure

clear indication of 2 phases:

4 apparent LCPs (2 for QL, 2 for HL)

strongly coupled scalars

order of transition/crossover unclear

Generic features

Generic featur

QCD-like **QCD-like**

lightest state is 0⁺⁺; $m_S < m_V$

strongly coupled scalars

uncharged part \neq pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1^{-1} ; $m_V < m_S$

degeneraci QCD-like

lightest state is 0⁺⁺; $m_S < m_V$

strongly coupled scalars

uncharged part ≠ pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1⁻⁻; $m_V < m_S$

degeneracies acro QCD-like

lightest state is 0⁺⁺; $m_S < m_V$

strongly coupled scalars

uncharged part ≠ pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1⁻⁻; $m_V < m_S$

degeneracies acro QCD-like

lightest state is 0⁺⁺; $m_S < m_V$

strongly coupled scalars

uncharged part ≠ pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1⁻⁻; $m_V < m_S$

degeneracies acro **QCD-like**

lightest state is 0⁺⁺; *m_S* < *m_V*

strongly coupled scalars

uncharged part ≠ pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1^{-−}; *m_V* < *m_S*
 QCD-like

lightest state is 0⁺⁺; $m_S < m_V$

strongly coupled scalars

uncharged part \neq pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1⁻⁻; $m_V < m_S$

degeneracies QCD-like

lightest state is 0⁺⁺; $m_S < m_V$

strongly coupled scalars

uncharged part ≠ pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1⁻⁻; $m_V < m_S$

degeneracies acro QCD-like

lightest state is 0⁺⁺; $m_S < m_V$

strongly coupled scalars

uncharged part \neq pure YM

heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1⁻⁻; $m_V < m_S$

degeneracies

Higgs-like

The adjoint-scalar case

 $SU(2) \times U(1)$ $U(1)^* \times U(1)$

Summary and outlook

Results

Summary and outlook
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling

Results

qualitative differences from pure Ya **Summary and outlook**
systematic control matters
gauge invariance has a qualitative effect on nonperturbative spectra
qualitative differences, including at small coupling
Results
qualitative differences from pure Yang–Mill **Summary and outlook**
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling
 Results

qualitative differences from pure **Summary and outlook**
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling
 Results

qualitative differences from pure **Summary and outlook**
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling
 Results

qualitative differences from pure Summary and outlook

Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling

Results

qualitative differences from pure Yang–M Summary and outlook

Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling

Results

qualitative differences from pure Yang–M **Summary and outlook**
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling
 Results

qualitative differences from pure **Summary and outlook**
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling
 Results

qualitative differences from pure **Summary and outlook**
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling
 Results

qualitative differences from pure **Summary and outlook**
 Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling
 Results

qualitative differences from pure

The observable spectrum for GUT-like theories

Elizabeth Dobson • Axel Maas • Bernd Riederer University of Graz

41st Lattice conference • Liverpool, 31.07.2024

Spectroscopy

Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m Grand Unified Theories

importance of systematic control

nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi m

Comparison to pure Yang–Mills

 θ

 $0^{+ +}_0 0^{+ -}_0 0^{+}_0 0^{ -}_0 1^{+ +}_0 1^{+ -}_0 1^{ -}_0 1^{ -}_0 1^{ -}_0 2^{+ +}_0 2^{+ -}_0 2^{ - +}_0 2^{ -}_0 0^{+}_1 0^{ -}_1 1^{ -}_1 1^{ -}_1 1^{ -}_1 2^{ +}_1 2^{ -}_1$ β = 6.472300. κ = 0.459049. γ = 5.750400