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nontrivial “broken-group” observables

Gauge invariance

BRST breaks down for nonabelian theories

elementary fields are unphysical

the Fröhlich–Morchio–Strocchi mechanism

Spectroscopy

toy SU(3)model to test FMS mechanism

discrepancies with naive perturbation theory

relevance of nonperturbative physics



Gauge-invariant approach to grand unified theories

which assumptions carry over from SM pheno?

what is the correspondence between bound states

in the unbroken theory and SM observables?

which GUT groups are plausible?

gauge-fixed

“SSB” 
subgroup(effective)

SM

1Maas, arXiv: 1712.04721v4 — review article (see “FAQs” at end for a good overview)

ΛGUT

Energy

unifying

GUT pheno standard PT

gauge-fixed     our approach

•  subgroup depends on gauge choice

•  different spectra possible

•  nontrivial mapping to SM spectrum

•  no assumption that BEH  ⟹ low-energy

group

?



Elementary fields form an unphysical state space

residual gauge orbits

1st Gribov region

Gribov copies

ΩFMR
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no unique solutions beyond PT 

BRST insufficient to fix gauge

ξ-invariance ⇏ gauge invariance

perturbative state space is gauge-dependent

elementary fields (and e.g. Higgs vev) 

are not reliable order parameters

nonabelian gauge group  + local gauge-fixing condition:

gauge orbit

fundamental modular region

Landau gauge-fixing surface

Gribov, Nucl. Phys. B (1978)        Singer, Comm. Math. Phys. (1978)         Fujikawa, Nucl. Phys. B (1983)

can we work directly with composite states in perturbation theory instead?



fermion               vector boson             “Higgs”

elementary:

composite:

Fröhlich–Morchio–Strocchi approach: composite states

breaks to

G-singlet

Higgs mechanism:

exact, nonperturbative relation

fix to choice of gauge with ⟨φ⟩ ≠ 0

sum ofH-singletsphysical observable: ⟺

boundstate-boundstate correspondence 

after gauge-fixing is nontrivial in general:

important for BSM model building!

3Sondenheimer, arXiv:1912.08680v2       Fröhlich, Morchio and Strocchi, Phys. Lett B (1980) & Nucl. Phys. B (1981)
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Perturbation theory: “bound-state Higgs” vs 1  vector singlet-  

Maas and Sondenheimer, arXiv: 2009.06671v2          Fröhlich, Morchio and Strocchi, Phys. Lett. B (1980) & Nucl. Phys. B (1981)

expand in choice of gauge with ⟨φ⟩ ≠ 0
e.g. φ(x) = vn̂ + η(x)

⟨(φ†Dμφ)†(x)(φ†Dνφ)(y)⟩cÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
singlet ⟹ only one pole

= v2cab⟨W (a)
μ (x)W (b)

ν (y)⟩c + O(η/v) + . . .ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
don’t affect pole structure

poles coincide to all orders in perturbation theory!

coincides with standard PT⟨(φ†φ)(x)(φ†φ)(y)⟩cÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
bound-state mass

= v2⟨h(x)h(y)⟩c + 2v⟨h(x)(η†η)(y)⟩c + ⟨(η†η)(x)(η†η)(y)⟩cÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
extra terms neglected in standard picture

h(x) = 2Re[n̂†η(x)]

conflicts with standard PT
for SU(N > 2)

4

[here: SU(N) Yang–Mills with single fundamental scalar]



Gauge invariance qualitatively changes the PT spectrum

composite operators
with custodial charge

1− singlet ⟹ loss of degeneracy
due to structure of gauge group

5

Standard PT still works well when:
gauge group is fundamental SU(2)
⟹ enhanced charge symmetry

or

operators are explicitly gauge invariant

standard approach considering gauge invariance

[Example: SU(N) Yang–Mills with single fundamental scalar]

⟨(φ†Dμφ)†(x)(φ†Dνφ)(y)⟩ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
singlet ⟹ only one pole



Toy model to test FMS approach: SU(3) + YM “GUT-like”* 

L = 1
2 tr(WμνW

μν ) + ∣Dφ∣2 − λ(∣φ∣2 − f2)2
βRe tr∑μ<ν [ − Uμν (x)]𝕀 −κ∑±μ φ†(x)UR

μ (x)φ(x + μ̂)
+∣φ∣2(x) + γ(∣φ∣2(x) − 1)2

‘QCD-like’ region

‘Higgs-like’ region

Generalisation of SM gauge-weak sector

single scalar φ ∈ SU(3) or φ ∈ su(3)

Nontrivial custodial group
global U(1) or Z2

Breaks to nontrivial gauge group

SU(3) → SU(2) or SU(2) × U(1), U(1) × U(1)

6Lattice results: Maas and Törek, arXiv:1804.04453

what is the stable spectrum?

are the lighter states charged?

do lattice results support FMS?

λ ∼
γ
κ2

g ∼ 1√
β



Constructing an operator basis in different channels

lattice irrep

PC
G;Λ

charge parity

              parity
spin

custodial charge

J

States for any (J,M) via ‘ladder operators’:
D̃± = ∓i(D1 ± iD2)/√2 , D̃0 = iD3

Continuum→ lattice: project ontoOh irreps
via Clebsch–Gordan coefficients

Project to required parity/charge parity

Smear linksÍÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÏ
stout

and scalarsÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
APE

to enlarge basis

φ† ⋅ (Dμ1 . . .Dμnφ)
U(1)-neutral,  gauge-scalar

(Dμ1 . . .Dμn1
φ) ⋅ [(Dν1 . . .Dνn2

φ)× (Dρ1 . . .Dρn3
φ)]

U(1)-charged,  gauge-scalar

tr [(Dμ1 . . .Dμn1
Fν1ρ1 ) . . . (Dσ1 . . .DσnR FνRρR )]

gaugeball  (+ scalar insertions for adjoint)

7Dudek et al., arXiv:1004.4930           Wurtz and Lewis, arXiv:1307.1492



Implementation details

Heatbath + OR updates
• Cabbibo–Marinari method

• Scalar OR: rotate φ(x) around vector∝ ∂S
∂φ(x)

• Adjoint case: approx. HB/OR
+ accept/reject step

Gauge fixing
Landau ’t Hooft or Unitary
Stochastic OR

Smearing
Stout (links), APE (scalars)

Operator basis
on fixed timeslice
momentum boosts

Spectroscopy
variational analysis
fitting to plateaus of C(t)
scattering from stable states
V → ∞ extrapolation

8Jenny, Maas and Riederer, arXiv:2204.02756 — fitting/variational analysis details

Setup
SU(3) + YM + single scalar
3D coupling space (β, κ, γ)
isotropic lattice: L = 10,12, . . . ,32
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with Higgs effect

‘QCD-like’ region

close to phase boundary

[NB: everything normalised to lightest mass]

9

with Higgs effect

‘QCD-like’ region

close to phase boundary



10

= elastic thresholds from naive scattering

= upper bound, no stable state

=stable state



Features of the fundamental spectrum

Generic features

presence of massive charged bound-states

two distinct phases with different orderings of 0++ and 1−−

degeneracies across different channels

light pseudoscalar 0+−

so far seems (?) consistent with FMS

appears not to be any SSB of custodial U(1)

HL

QL

Phase structure

clear indication of 2 phases: 

4 apparent LCPs (2 for QL, 2 for HL)

order of  transition/crossover unclear

QCD-like

lightest state is 0++; mS < mV

strongly coupled scalars

uncharged part ≠ pure YM

heavier U(1)-charged states

Higgs-like

lightest state is 1−−; mV < mS

degeneracies across channels

Phase boundary

massless modes?

11



The adjoint-scalar case

More interesting

multiple breaking patterns

more applications to BSM physics

More difficult

(presumably) massless modes

challenges in taking continuum limit

(even!) noisier

Spectroscopy (work in progress)

automatising larger operator basis

stable and scattering states

SU(2) × U(1)
U(1)⋆ × U(1)

Dobson, Maas and Riederer, arXiv:2211.05812 — plot for ℤ2 phase diagram 12



Summary and outlook

Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra

qualitative differences, including at small coupling

Results

qualitative differences from pure Yang–Mills, and from SU(2)
FMS: nontrivial field theory effects can still be treated perturbatively

Work in progress
understanding fundamental spectrum (analytically?)
preliminary adjoint spectrum
automatising large operator basis
full scattering analysis
check consistency with FMS

13
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Comparison to pure Yang–Mills

Pure-YM SU(3) case

[normalised to lightest mass]

data (left) from Athenodorou and Teper, arXiv:2106.00364

SU(3) YM + scalar
(deep QCD-like region)


