

The observable spectrum for GUT-like theories

Elizabeth Dobson • Axel Maas • Bernd Riederer University of Graz

41st Lattice conference • Liverpool, 31.07.2024

Grand Unified Theories

importance of systematic control nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories elementary fields are unphysical the Fröhlich-Morchio-Strocchi mechanism

Spectroscopy

toy SU(3) model to test FMS mechanism discrepancies with naive perturbation theory relevance of nonperturbative physics

Gauge-invariant approach to grand unified theories

our approach

- subgroup depends on gauge choice
- different spectra possible
- nontrivial mapping to SM spectrum
- no assumption that BEH \implies low-energy

which assumptions carry over from SM pheno?

- (?) what is the correspondence between bound states in the unbroken theory and SM observables?
- Which GUT groups are plausible?

Elementary fields form an unphysical state space

nonabelian gauge group + local gauge-fixing condition:

no unique solutions beyond PT BRST insufficient to fix gauge

ξ-invariance ⇒ gauge invariance perturbative state space is gauge-dependent

elementary fields (and e.g. Higgs vev) are not reliable order parameters

can we work directly with composite states in perturbation theory instead?

Gribov, Nucl. Phys. B (1978) Singer, Comm. Math. Phys. (1978) Fujikawa, Nucl. Phys. B (1983)

Fröhlich-Morchio-Strocchi approach: composite states

boundstate-boundstate correspondence after gauge-fixing is nontrivial in general:

important for BSM model building!

Perturbation theory: "bound-state Higgs" vs 1⁻ vector singlet

[here: SU(N) Yang–Mills with single fundamental scalar]

poles coincide to all orders in perturbation theory!

Gauge invariance qualitatively changes the PT spectrum

[Example: SU(N) Yang–Mills with single fundamental scalar]

Toy model to test FMS approach: SU(3) + YM "GUT-like"*

Generalisation of SM gauge-weak sector single scalar $\varphi \in SU(3)$ or $\varphi \in su(3)$

Breaks to nontrivial gauge group $SU(3) \rightarrow SU(2)$ or $SU(2) \times U(1)$, $U(1) \times U(1)$

Nontrivial custodial group global U(1) or Z_2

what is the stable spectrum?

② are the lighter states charged?

⑦ do lattice results support FMS?

Constructing an operator basis in different channels

Implementation details

Setup

SU(3) + YM + single scalar 3D coupling space (β, κ, γ) isotropic lattice: L = 10, 12, ..., 32

Gauge fixing Landau 't Hooft or Unitary Stochastic OR

Operator basis on fixed timeslice momentum boosts

1AD

Heatbath + OR updates

- · Cabbibo-Marinari method
- Scalar OR: rotate $\varphi(x)$ around vector $\propto \frac{\partial S}{\partial \varphi(x)}$
- Adjoint case: approx. HB/OR
 + accept/reject step

Smearing

Stout (links), APE (scalars)

Spectroscopy

variational analysis fitting to plateaus of C(t)scattering from stable states $V \rightarrow \infty$ extrapolation

Features of the fundamental spectrum

Phase structure

clear indication of 2 phases: 4 apparent LCPs (2 for QL, 2 for HL) order of transition/crossover unclear

Generic features

presence of massive charged bound-states two distinct phases with different orderings of 0⁺⁺ and 1⁻⁻ degeneracies across different channels light pseudoscalar 0⁺⁻ so far seems (?) consistent with FMS

appears not to be any SSB of custodial U(1)

QCD-like lightest state is 0^{++} ; $m_S < m_V$ strongly coupled scalars uncharged part \neq pure YM heavier U(1)-charged states

Phase boundary

massless modes?

Higgs-like

lightest state is 1^{--} ; $m_V < m_S$

degeneracies across channels

The adjoint-scalar case

More difficult

(presumably) massless modes challenges in taking continuum limit (even!) noisier

Spectroscopy (work in progress) automatising larger operator basis stable and scattering states

Summary and outlook

Systematic control matters

gauge invariance has a qualitative effect on nonperturbative spectra qualitative differences, including at small coupling

Results

qualitative differences from pure Yang–Mills, and from SU(2) FMS: nontrivial field theory effects can still be treated perturbatively

Work in progress

understanding fundamental spectrum (analytically?) preliminary adjoint spectrum automatising large operator basis full scattering analysis check consistency with FMS

The observable spectrum for GUT-like theories

Elizabeth Dobson • Axel Maas • Bernd Riederer University of Graz

41st Lattice conference • Liverpool, 31.07.2024

Grand Unified Theories

importance of systematic control nontrivial "broken-group" observables

Gauge invariance

BRST breaks down for nonabelian theories elementary fields are unphysical the Fröhlich-Morchio-Strocchi mechanism

Spectroscopy

toy SU(3) model to test FMS mechanism discrepancies with naive perturbation theory relevance of nonperturbative physics

Comparison to pure Yang-Mills

n

 $0_0^{++} 0_0^{-+} 0_0^{-+} 0_0^{--} 1_0^{++} 1_0^{+-} 1_0^{-+} 1_0^{--} 2_0^{++} 2_0^{--} 2_0^{-+} 2_0^{--} 0_1^{+-} 0_1^{--} 1_1^{+-} 1_1^{--} 2_1^{+-} 2_1^{--} 2_1^{--} \\ \beta = 6.472300 \ \kappa = 0.459049 \ \nu = 5.750400$

data (left) from Athenodorou and Teper, arXiv:2106.00364