Precision determination of the Wilson-flow scale W_{0}

Gen Wang Centre de Physique Théorique de Marseille

Budapest-Marseille-Wuppertal collaboration (BMWc)

arXiv:2407.10913

Physical point

- $N_f = 2 + 1 + 1$ staggered fermions
- Stout smearing n = 4, $\rho = 0.125$
- M_π and M_{ss} around physical point with the finest lattice spacing 0.048 fm
- \succ The lattice scale is set by Ω baryon mass
- \blacktriangleright Precise determination of w₀ from M_Ω

Ω correlation function

• For the Ω baryon, two staggered baryon operators in [1] and an operator which only couples to a single taste [2]

$$\begin{aligned} \Omega_{\rm VI}(t) &= \sum_{x_k even} \epsilon_{abc} \left[S_1 \chi_a S_{12} \chi_b S_{13} \chi_c - S_2 \chi_a S_{21} \chi_b S_{23} \chi_c + S_3 \chi_a S_{31} \chi_b S_{32} \chi_c \right] (x) \\ \Omega_{\rm XI}(t) &= \sum_{x_k even} \epsilon_{abc} \left[S_1 \chi_a S_2 \chi_b S_3 \chi_c \right] (x) \\ \Omega_{\rm Ba}(t) &= \left[2\delta_{\alpha 1} \delta_{\beta 2} \delta_{\gamma 3} - \delta_{\alpha 3} \delta_{\beta 1} \delta_{\gamma 2} - \delta_{\alpha 2} \delta_{\beta 3} \delta_{\gamma 1} + (\cdots \beta \leftrightarrow \gamma \cdots) \right] \\ &\sum_{x_k even} \epsilon_{abc} \left[S_1 \chi_{a\alpha} S_{12} \chi_{b\beta} S_{13} \chi_{c\gamma} - S_2 \chi_{a\alpha} S_{21} \chi_{b\beta} S_{23} \chi_{c\gamma} + S_3 \chi_{a\alpha} S_{31} \chi_{b\beta} S_{32} \chi_{c\gamma} \right] (x) \end{aligned}$$

Wuppertal smearing connects 2a lattice spacing

$$\left[\hat{W}v\right]_{x} = (1-\sigma)v_{x} + \frac{\sigma}{6}\sum_{\mu=1,2,3} \left(U^{3d}_{\mu,x}U^{3d,\dagger}_{\mu,x+\mu}v_{x+2\mu} + U^{3d}_{u,x-\mu}U^{3d,\dagger}_{\mu,x-2\mu}v_{x-2\mu}\right)$$

[1] M. F. L. Golterman and J. Smit, Nucl. Phys. B 255 (1985), 328-340
 [2] J. A. Bailey, Phys. Rev. D 75 (2007), 114505 [arXiv:hep-lat/0611023

GEVP method

• Staggered Ω correlators with positive and oscillating negative parity states:

 $H(t, A, M) = A_0 e^{-M_0 t} + (-1)^{t+1} A_1(M_1, t) e^{-M_1 t} + A_2 e^{-M_2 t} + (-1)^{t+1} A_3 e^{-M_3 t} + \cdots$

• Use time shift to create an `new` operator [1]

$$H(t+2t_s) = \sum_i \left[A'_i e^{+2M_i t_s}\right] e^{-M_i t}$$

- Combine smear-point, smear-smear, point-point correlators into one Matrix for GEVP
- Presence of oscillating makes the time shifted GEVP procedure more efficient

$$C(t \in \text{even/odd}) = \frac{1}{2}log(\frac{C(t+2)}{C(t)})$$

[1] C. Aubin, and K. Orginos, AIP Conf. Proc. 1374 (2011) 1, 621-624

GEVP method

	$\left(\begin{array}{c} H^{pp}_{t+2t_p+0} \end{array} \right)$	$H^{pp}_{t+2t_p+1}$	$H^{ps}_{t+t_p+0}$	$H^{ps}_{t+t_p+1}$	$H^{ps}_{t+t_p+2}$	$H^{ps}_{t+t_p+3}$
$\mathbf{H}(t) =$	$H^{pp}_{t+2t_p+1}$	$H^{pp}_{t+2t_p+2}$	$H^{ps}_{t+t_p+1}$	$H_{t+t_p+2}^{ps}$	$H_{t+t_p+3}^{ps}$	$H^{ps}_{t+t_p+4}$
	$\overline{H^{sp}_{t+t_p+0}}$	$H^{sp}_{t+t_p+1}$	H_{t+0}^{ss}	H_{t+1}^{ss}	H_{t+2}^{ss}	H_{t+3}^{ss}
	$H^{sp}_{t+t_p+1}$	$H^{sp}_{t+t_p+2}$	H_{t+1}^{ss}	H_{t+2}^{ss}	H^{ss}_{t+3}	H_{t+4}^{ss}
	$H^{sp}_{t+t_p+2}$	$H^{sp}_{t+t_p+3}$	H_{t+2}^{ss}	H_{t+3}^{ss}	H^{ss}_{t+4}	H_{t+5}^{ss}
	$\begin{pmatrix} H_{t+t_p+3}^{sp} \end{pmatrix}$	$H^{sp}_{t+t_p+4}$	H_{t+3}^{ss}	H_{t+4}^{ss}	H_{t+5}^{ss}	H_{t+6}^{ss} /

- Point source correlators get additional time shift t_p to suppress its large excited state effects
- Solve the Generalized Eigenvalue Problem (GEVP)

 $\mathbf{H}(t_a)v_i(t_a, t_b) = \lambda_i(t_a, t_b)\mathbf{H}(t_b)v_i(t_a, t_b)$

Ground state is extracted wth 0.1% precision

Ω measurements

eta	#conf	$N_{\rm Wptl}$	$N_{\rm 3d}$	$\mid t_p$	t_a	t_b	range $#1$	range $\#2$	# pt, sm sources
3.7000	904	24	32	1	4	7	715	815	28928, 229376
3.7500	2072	30	40	1	4	7	818	$9\dots 18$	66208,530176
3.7553	1907	34	46	1	4	7	$9\dots 19$	1019	61024, 488192
3.8400	2949	46	62	2	4	9	$10\dots 20$	$11\dots 20$	125440, 2807552
3.9200	4296	67	90	2	6	9	1225	$13\dots 25$	137472, 3038720
4.0126	6980	101	135	3	6	9	$15\dots 30$	$16\dots 30$	223360, 4235520
4.1479	5017	178	238	5	6	11	$19\dots 40$	$21\dots 40$	160544, 2068736

Over 30,000 gauge configurations

▶10's of millions measurements

Measurements on GPUs based on Quda [1] and Qlattice [2]

Ω masses

- Correlated (first 3 points) and uncorrelated (second 3 points) are consistent
- Taste breaking effects not observed between different Omega operators
- Reached less than 0.1% error on 0.048 fm lattices

Continuum extrapolation formula

• The logarithmic derivative of the gauge-action density along the gradient flow time

$$W_{\tau}[U] \equiv \frac{d(\tau^2 E[U,\tau])}{dlog\tau}, \langle W_{\tau=w_0^2} \rangle = 0.3$$

• Continuum extrapolations as a taylor expansion of a^2

$$Y = Y_0 + A_1 a^2 + A_2 a^4 + A_3 a^6 + \cdots$$

Or non-analytic from the Symanzik effective theory [1] with `n` unknown

$$a^2 \to \alpha_s(a)^n a^2$$

 Major staggered artifact (taste violation) scale with a power of n = 3

$$\Delta_{KS}(\xi) \equiv M_{\pi}^2(\xi) - M_{ll}^2$$

Continuum extrapolation

• Observable $Y = w_0 M_{\Omega}$

 $Y = A(a^2) + A'(\Delta_{KS}) + (B_0 + B_1 a^2)X_l + (C_0 + C_1 a^2)X_s$

- $\succ A(a^2)$ or $A'(\Delta_{KS})$
- ➢ beta cuts 0, 1, 2, 3, 4
- B1 or C1 included or not
- different Omega fits
- different meson fits

Fits distribution

Electromagnetic effects

• Observable $Y = w_0 M_{\Omega}$

 $Y = A + BX_l + CX_s + DX_{\delta m} + Ee_v^2 + Fe_v e_s + Ge_s^2$

• Fit to a system of equations [1]

$$[Y]_{0} = [A + BX_{l} + CX_{s}]_{0}$$

$$[Y]'_{m} = [DX_{\delta m}]'_{m}$$

$$[Y]''_{20} = [A + BX_{l} + CX_{s} + DX_{\delta m}]''_{20} + [E]_{0}$$

$$[Y]''_{11} = [A + BX_{l} + CX_{s} + DX_{\delta m}]''_{11} + [F]_{0}$$

$$[Y]''_{02} = [A + BX_{l} + CX_{s} + DX_{\delta m}]''_{02} + [G]_{0}$$

[1] Sz. Borsanyi, and et. al., BMWc, Nature 593 (2021) 7857, 51-55

Final results

- 7 lattice spacings all at physical pion mass
- Omega baryon statistics errors well under control
- Electromagnetic effects included

$$[w_0]_{\rm phys} = 0.17245(22)(46)[51] \,\,{\rm fm}$$

Thank You