Progress on the spectroscopy study of the composite Higgs model with Sp(4) gauge theory and multiple fermion representations 02.08.2024 @ University of Liverpool

Ho Hsiao, C.-J. David Lin

Swansea University Prifysgol Abertawe Jong-Wan Lee

Ed Bennett, Niccolò Forzano, Biagio Lucini, Maurizio Piai, Fabian Zierler

Deog Ki Hong

Davide Vadacchino

Outline

- Introduction:
 - Sp(4) gauge theory: A Composite Higgs model
 - Top partner
- Techniques
 - Smearing, GEVP, Scale setting: gradient-flow
- Results
- Summary and Outlook

Higgs boson as a bound state of new strong dynamics, which is lighter because of being a pseudo Nambu-Goldstone Boson.

Symmetries

• Global symmetry: G

- Global symmetry: G
- Subgroup: \mathcal{H} with $G_{\rm EW} \subset \mathcal{H}$

- Global symmetry: G
- Subgroup: \mathcal{H} with $G_{\rm EW} \subset \mathcal{H}$

- Global symmetry: G
- Subgroup: \mathcal{H} with $G_{\rm EW} \subset \mathcal{H}$
- Vacuum misalignment angle: θ_B

- Global symmetry: G
- Subgroup: \mathcal{H} with $G_{\rm EW} \subset \mathcal{H}$
- Vacuum misalignment angle: θ_B
- Coset $\mathcal{G}/\mathcal{H} \to pNGBs$

- Global symmetry: G
- Subgroup: \mathcal{H} with $G_{\rm EW} \subset \mathcal{H}$
- Vacuum misalignment angle: θ_B
- Coset $\mathcal{G}/\mathcal{H} \to pNGBs$
- The scale of the EWSB: $v = f \sin \theta_B \ (f = |\vec{F}|)$

- Global symmetry: G
- Subgroup: \mathcal{H} with $G_{\rm EW} \subset \mathcal{H}$
- Vacuum misalignment angle: θ_B
- Coset $\mathcal{G}/\mathcal{H} \to pNGBs$
- The scale of the EWSB: $v = f \sin \theta_B \ (f = |\vec{F}|)$
- ✤ Technicolor model: Higgs $\in \mathcal{H}$

Composite Higgs Model Top partial compositeness

• Share the same quantum number as the top

5

• Share the same quantum number as the top

- Spin-1/2 bound states emerging from the novel strong-interaction sector

- Share the same quantum number as the top
 - Spin-1/2 bound states emerging from the novel strong-interaction sector
 - Carry QCD colour charge

- Share the same quantum number as the top
 - Spin-1/2 bound states emerging from the novel strong-interaction sector
 - Carry QCD colour charge
- Hypercolour-neutral

- Share the same quantum number as the top
 - Spin-1/2 bound states emerging from the novel strong-interaction sector
 - Carry QCD colour charge

→ Introducing higher representation

• Hypercolour-neutral

- Share the same quantum number as the top
 - Spin-1/2 bound states emerging from the novel strong-interaction sector
 - Carry QCD colour charge
- Hypercolour-neutral
- Give the mass to the top by mixing with it

$$\begin{aligned} \mathcal{L}_{\text{mass}} &= -M\bar{T}_L T_R - y \frac{v}{\sqrt{2}} \bar{t}_L T_R - \lambda f \bar{T}_L t_R + \text{h.c.}, \qquad \Rightarrow m_t \simeq \frac{yv}{\sqrt{2}} \frac{\lambda f}{\sqrt{\lambda^2 f^2 + M^2}} \\ &= (\bar{t}_L \quad \bar{T}_L) \begin{pmatrix} 0 & \frac{yv}{\sqrt{2}} \\ \lambda f & M \end{pmatrix} \begin{pmatrix} t_R \\ T_R \end{pmatrix} + \text{h.c.}. \end{aligned}$$

→ Introducing higher representation

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes {f F}$	$6 imes \mathbf{Spin}$	$\psi \chi \chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	$\psi\chi\chi$
M3	SO(7)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M5	Sp(4)	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$\psi\chi\chi$
M6	SU(4)	$5 imes {f A}_2$	$3 imes({f F},\overline{f F})$	$\psi\chi\chi$
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi\chi\chi$
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M10	SO(10)	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M11	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes(\mathbf{A}_2,\overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$

*Weyl fermions

[D. Franzosi and G. Ferretti, arXiv:1905.08273]

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes {f F}$	$6 imes {f Spin}$	$\psi\chi\chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	$\psi\chi\chi$
M3	SO(7)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M5	Sp(4)	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$\psi\chi\chi$
M6	SU(4)	$5 imes \mathbf{A}_2$	$3 imes({f F},\overline{f F})$	$\psi\chi\chi$
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi\chi\chi$
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M10	SO(10)	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M11	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes(\mathbf{A}_2,\overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$

*Weyl fermions

[D. Franzosi and G. Ferretti, arXiv:1905.08273]

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes {f F}$	$6 imes \mathbf{Spin}$	$\psi\chi\chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	$\psi\chi\chi$
M3	SO(7)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M5	Sp(4)	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$\psi\chi\chi$
M6	SU(4)	$5 imes \mathbf{A}_2$	$3 imes({f F},\overline{f F})$	$\psi\chi\chi$
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi\chi\chi$
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$\psi\psi\chi$
M10	SO(10)	$4 \times (S_{1} The minit$	nal model	$\psi\psi\chi$
M11	SU(4)	$4 \times (\mathbf{F}, \mathbf{F})$	$\begin{bmatrix} 1XIV.1511.0502 \\ 6 \times A_2 \end{bmatrix}$	$\psi\psi\chi$
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes(\mathbf{A}_2,\overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$

*Weyl fermions

[D. Franzosi and G. Ferretti, arXiv:1905.08273]

Our choice of model

- Sp(4) gauge theory with 2F+3AS <u>Dirac fermions</u>
- Breaking pattern:
 - $G/H = SU(4) \times SU(6) / Sp(4) \times SO(6)$ Enhanced global symmetry due to the (pseudo-) reality

(4F+6AS <u>2-component Weyl fermions)</u>

Our choice of model

- Sp(4) gauge theory with 2F+3AS Dirac fermions
- Breaking pattern:
 - $G/H = SU(4) \times SU(6) / Sp(4) \times SO(6)$ Enhanced global symmetry due to the (pseudo-) reality

- ► 4: SM Higgs doublet
- 1: made heavy in model building

(4F+6AS 2-component Weyl fermions)

Our choice of model

- Sp(4) gauge theory with 2F+3AS Dirac fermions
- Breaking pattern:
 - $G/H = SU(4) \times SU(6) / Sp(4) \times SO(6)$ Enhanced global symmetry due to the (pseudo-) reality

- ► 4: SM Higgs doublet
- 1: made heavy in model building

(4F+6AS 2-component Weyl fermions)

SU(3) embedded in antisymmetric representation:

 $SU(6) \rightarrow SO(6) \supset SU(3)$ OCD colour SU(3)

Chimera Baryon

- Interpolating operators
 - Λ type: $\mathcal{O}_{CB}^5 = \left(\bar{\psi}^{1\,a} C \gamma^5 \psi^{2\,b} \right) \Omega_{ad} \Omega_{bc} \chi^{bc}$

(J, R) = (1/2, 5)*top partner

Parity projection

$$P_e \equiv \frac{1}{2}(1+\gamma^0)$$
 and $P_o \equiv \frac{1}{2}(1-\gamma^0)$

a, *b*, *c*: hypercolour, Ω : 4 × 4 symplectic matrix *J*: spin, *R*: irreducible rep. of the fundamental sector

-
$$\Sigma$$
 type: $\mathcal{O}_{CB}^{i} = \left(\bar{\psi}^{1\ a}C\gamma^{i}\psi^{2\ b}\right)\Omega_{ad}\Omega_{bc}$
k cd
 $\Sigma: (J,R) = (1/2,1)^{*}$ top partner
 $\Sigma: (J,R) = (3/2,10)^{*}$
Spin projection
 $\left(P^{1/2}\right)^{ij} = \frac{1}{3}\gamma^{i}\gamma^{j}$ and $\left(P^{3/2}\right)^{ij} = \delta^{ij} - \frac{1}{3}$

Label	Interpolating operator	Mesons in	J^P	Sp(4)	SO(6)
Μ	${\cal O}_{ m M}$	$N_f = 2 \text{ QCD}$			
PS	$\overline{Q^i}\gamma_5Q^j$	π	0-	5	1
\mathbf{S}	$\overline{Q^i}Q^J$	a_0	0 ⁺	5	1
V	$\overline{Q^i}\gamma_\mu Q^j$	ho	1-	10	1
Т	$\overline{Q^i}\gamma_0\gamma_\mu Q^j$	ho	1-	10	1
AV	$\overline{Q^i}\gamma_5\gamma_\mu Q^j$	a_1	1^+	5	1
AT	$\overline{Q^i}\gamma_5\gamma_0\gamma_\mu Q^j$	b_1	1+	10	1
\mathbf{ps}	$\overline{\Psi^k}\gamma_5\Psi^l$	π	0-	1	20'
\mathbf{S}	$\overline{\Psi^k}\Psi^l$	a_0	0^+	1	20'
\mathbf{V}	$\overline{\Psi^k}\gamma_\mu\Psi^l$	ho	1-	1	15
\mathbf{t}	$\overline{\Psi^k}\gamma_0\gamma_\mu\Psi^l$	ho	1-	1	15
av	$\overline{\Psi^k}\gamma_5\gamma_\mu\Psi^l$	a_1	1 ⁺	1	20'
at	$\overline{\Psi^k}\gamma_5\gamma_0\gamma_\mu\Psi^l$	b_1	1 ⁺	1	15

• The action: $S = S_g + S_f$

$$S_g \equiv \beta \sum_{x} \sum_{\mu < \nu} \left(1 - \frac{1}{2N} \operatorname{Re} \operatorname{Tr} U_{\mu}(x) \right)$$

$$S_f \equiv a^4 \sum_{j=1}^{N_f} \sum_x \overline{Q}^j(x) D_m^{(f)} Q^j(x) + a^4$$

- Software
 - HiRep [L. D. Debbio et al.]
 - GRID [P. Boyle et al.]
- Wilson fermion

 $)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)\bigg),$

 n_f ${}^4\sum \sum \overline{\Psi}^j(x) D_m^{(as)} \Psi^j(x)$ j=1 x

Lattice Method Smearing techniques

Lattice Method Smearing techniques

Wuppertal smearing (Gaussian smearing of ground state.

$$q^{(n+1)}(x) = \frac{1}{1+2d\varepsilon} \left[q^{(n)}(x) + \varepsilon \sum_{\mu=\pm 1}^{\pm d} U_{\mu}(x)q^{(n)}(x+\hat{\mu}) \right]$$

• Wuppertal smearing (Gaussian smearing) acts on <u>fermion field</u> increasing the overlap

Lattice Method **Smearing techniques**

of ground state.

$$q^{(n+1)}(x) = \frac{1}{1+2d\varepsilon} \left[q^{(n)}(x) + \varepsilon \sum_{\mu=\pm 1}^{\pm d} U_{\mu}(x)q^{(n)}(x+\hat{\mu}) \right]$$

• APE smearing averages out UV fluctuations of the gauge fields.

$$U_{\mu}^{(n+1)}(x) = P\left\{ (1-\alpha)U_{\mu}^{(n)}(x) + \frac{\alpha}{6}S_{\mu}^{(n)}(x) \right\}, \quad S_{\mu}(x) = \sum_{\pm\nu\neq\mu} U_{\nu}(x)U_{\mu}(x+\hat{\nu})U_{\nu}^{\dagger}(x+\hat{\mu})$$

• Wuppertal smearing (Gaussian smearing) acts on <u>fermion field</u> increasing the overlap

GEVP

• Generalised Eigenvalue problem

$$C(t_2)v_n(t_2, t_1) = \lambda_n(t_2, t_1)C(t_1)v_n(t_2, t_1) \to \lambda_n(t_2, t_1)$$

The matrix C(t) is constructed by different interpolating operators.

GEVP

• Generalised Eigenvalue problem

$$C(t_2)v_n(t_2, t_1) = \lambda_n(t_2, t_1)C(t_1)v_n(t_2, t_1) \to \lambda_n(t_2, t_1)$$

The matrix C(t) is constructed by different interpolating operators.

• <u>Type I</u>: vary the operators by V, T, and their cross-channels

$$C(t) = \begin{pmatrix} c_{VV}(t) & c_{VT}(t) \\ c_{TV}(t) & c_{TT}(t) \end{pmatrix}$$

$$\Rightarrow E_n(t) = \ln\left[\frac{\lambda_n(t+a,t_0)}{\lambda_n(t,t_0)}\right]$$

GEVP

• Generalised Eigenvalue problem

$$C(t_2)v_n(t_2, t_1) = \lambda_n(t_2, t_1)C(t_1)v_n(t_2, t_1) \to \lambda_n(t_2, t_1)$$

The matrix C(t) is constructed by different interpolating operators.

• Type I: vary the operators by V, T, and their cross-channels

$$C(t) = \begin{pmatrix} c_{VV}(t) & c_{VT}(t) \\ c_{TV}(t) & c_{TT}(t) \end{pmatrix}$$

$$\Rightarrow E_n(t) = \ln\left[\frac{\lambda_n(t+a,t_0)}{\lambda_n(t,t_0)}\right]$$

• Type II: vary smearing levels with a single channel

$$\mathcal{C}_{\mathcal{O}}(t) = \begin{pmatrix} C_{\mathcal{O}}^{0,0}(t) & C_{\mathcal{O}}^{0,40}(t) & C_{\mathcal{O}}^{0,80}(t) \\ C_{\mathcal{O}}^{40,0}(t) & C_{\mathcal{O}}^{40,40}(t) & C_{\mathcal{O}}^{40,80}(t) \\ C_{\mathcal{O}}^{80,0}(t) & C_{\mathcal{O}}^{80,40}(t) & C_{\mathcal{O}}^{80,80}(t) \end{pmatrix}$$
$$\Rightarrow E_n(t,t_0) = \cosh^{-1} \left[\frac{\lambda_n(t+a,t_0) + \lambda_n(t-a,t_0)}{2\lambda_n(t,t_0)} \right]$$

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

The gradient flow of the gauge field:

$$\frac{\mathrm{d}B_{\mu}(t,x)}{\mathrm{d}t} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)\big|_{t=0}$$

• Lüscher demonstrated that the action density can be related to the renormalised coupling [Martin Lüscher. 2009]

$$=0 = A_{\mu}(t, x)$$

Results: before fully dynamical

- F. and AS. Meson spectra [1912.06505]
- Glueball [2010.15781]
- Topology [2205.09254, 2205.09364]
- Chimera baryon [2311.14663]
- large-N meson [2312.08465]

Review: Sp(2N) [2304.01070]

Fully dynamical

- Parameter scan[2202.05516]
- GRID with Sp(2N) [2306.11649]
- Singlet meson [2405.05765]
- Spectral densities [2405.01388]

Results: Mesons Spectrum

Figure 4.3: The effective mass plot of ensemble DB2M4.

Results: Mesons

Smearing measurements

Figure: Comparison of PS (upper panel) and V (lower panel) meson masses with a wall source and a smeared source, measured on (f) dynamical ensembles. The colors indicate the β value: 6.9 (blue), 7.05 (green), 7.2 (red), 7.4 (cyan), and 7.5 (magenta).

Results: Mesons Chiral EFT and Extrapolations

> Apply tree-level chiral perturbation theory for the continuum and massless extrapolations.

$$\hat{m}_M^{2,\rm NLO} = \hat{m}_M^{2,\chi}$$

Quenched results:

 $X \left(1 + L_M^0 \hat{m}_{\rm PS}^2\right) + W_M^0 \hat{a}$

Meson	source	$\hat{m}_M^{2,\chi}$	L_M^0	W_M^0
V	smeared	0.431(11)	1.94(6)	-0.226(1)
	wall	0.451(13)	1.86(7)	-0.257(2)
V	smeared	0.632(18)	1.477(54)	-0.298(2)
	wall	0.657(21)	1.375(56)	-0.336(3)

17

Results: Mesons	
	3.5-
Fuil Spectrum	
Quenched results:	3.0-
• Fundamental (blue)	
• Antisymmetric (red)	2.5-
 Glueballs (black) 	
	2.0
	Ŵ

Results: Mesons

Dynamical $N_f = 2$ calculations

Quenching effects: quenched (blue) vs dynamical (red)

Results: Chimera Baryons

Results: chimera baryons Fitting

Quenched results Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+F_{3}\hat{m}_{PS}^{3}+A_{3}\hat{m}_{ps}^{3}+L_{2F}\hat{a}\hat{m}_{PS}^{2}+L_{2A}\hat{a}\hat{m}_{ps}^{2}$ $+F_4\hat{m}_{PS}^4+A_4\hat{m}_{ps}^4+C_4\hat{m}_{PS}^2\hat{m}_{ps}^2$

Results: chimera baryons Massless-continuum limit

Figure: The mass of three chimera baryons, Λ_{CB} , Σ_{CB} , and Σ_{CB}^* , as a function of \hat{m}_{PS}^2 (left) and \hat{m}_{ps}^2 (right), in the limit where the lattice spacing vanishes, while $\hat{m}_{\rm ps}^2 = 0$ (left) and $\hat{m}_{\rm PS}^2 = 0$ (right).

Results: chimera baryons

Massless-continuum limit

Figure: Comparison with masses of mesons in quenched approximation for fermions in the fundamental (blue bands) and antisymmetric (red bands) representation of Sp(4), and glueballs (yellow) at massless-continuum limit.

2.5

4.0

3.5-

3.0-

<<u>ξ</u> 2.0 ·

1.5

1.0

0.5

Fully dynamical ensembles

Label	β	$am_0^{(as)}$	$am_0^{(f)}$	$N_t \times N_s$	$\delta_{\mathrm{traj.}}$	$\langle P \rangle$	w_0/a	$m_{\rm PS}/m_{\rm V}$	$m_{\rm ps}/m$
M1	6.5	-1.01	-0.71	48×20	14	0.585172(16)	2.5200(50)	0.898(7)	0.925(6
M2	6.5	-1.01	-0.71	64×20	28	0.585172(12)	2.5300(40)	0.902(5)	0.928(2
M3	6.5	-1.01	-0.71	96×20	26	0.585156(13)	2.5170(40)	0.898(3)	0.926(2
M4	6.5	-1.01	-0.70	64×20	20	0.584228(12)	2.3557(31)	0.913(4)	0.935(3
M5	6.5	-1.01	-0.72	64×32	20	0.5860810(93)	2.6927(31)	0.885(4)	0.931(2

Results: chimera baryons Dynamical simulations

as the basis.

Figure 5.14: Effective mass plots of chimera baryons measured on fully dynamical ensemble M2. The masses displayed in the legend are extracted by solving the GEVP, using various smearing-level operators

Summary and Outlook

- Composite Higgs model
- Mesonic spectra: quenched, F dynamical, AS dynamical (soon...)
- Chimera baryons
 - Λ and Σ : <u>Top partner</u> candidates in our model
 - Σ^* with spin-3/2
- **□** Fully Dynamical studies

Technical

- Changing the fermion action: clover fermion, DW fermion, ...

- Matrix elements of chimera baryons
- Four-hyperquark matrix elements

Outlook

Obserable

Theoretical

- Beta function: conformality
- Anomalous dimension of the top-partner interaction

Results: Mesons Smearing measurements

Figure: A demonstrative effective mass plot of the ps meson, measured on ensemble ASB4M5 with the lattice extents $N_t = 54$ and $N_s = 32$. Different colors (shapes) of dots represent various choices of Wuppertal smearing iteration numbers at the source and at the sink. The step size of Wuppertal smearing is fixed at 0.16 among all measurements. The APE smearing parameters are common in these measurements with $\alpha = 0.5$ and $N_{APE} = 50$.

Results: chimera baryons Projection-CB two-point function

Interpolating operator

$$\mathcal{O}_{CB}^{\gamma}(x) \equiv \left(Q^{i\,a}{}_{\alpha}(x)\Gamma^{1\,\alpha\beta}Q^{j\,b}{}_{\beta}(x)\right)\Omega_{aa}$$

$$\blacktriangleright \text{two-point function}$$

$$\begin{split} C^{\gamma\gamma'}(t) &\equiv \sum_{\vec{x}} \langle \mathcal{O}_{\rm CB}^{\gamma}(x) \overline{\mathcal{O}_{\rm CB}^{\gamma'}}(0) \rangle \\ &= -\sum_{\vec{x}} \left(\Gamma^2 S^{k \, cd}_{\Psi^{} c' d'}(x,0) \overline{\Gamma^2} \right) \\ &\times \operatorname{Tr} \left[\Gamma^1 S^b_{Q \ b'}(x,0) \overline{\Gamma^1} S^a_{Q \ a} \right] \end{split}$$

 ${}_{vd}\Omega_{bc}\Gamma^{2\,\delta\gamma}\Psi^{k\,cd}{}_{\gamma}(x)$

 $N_{\gamma\gamma'} \Omega_{cb} \Omega^{b'c'} \Omega_{ad} \Omega^{d'a'}$ a'(x,0)

Results: chimera baryons Projection-CB two-point function

Interpolating operator

 $\mathcal{O}_{\rm CB}^{\gamma}(x) \equiv \left(Q^{i\,a}{}_{\alpha}(x)\Gamma^{1\,\alpha\beta}Q^{j\,b}{}_{\beta}(x)\right)\Omega_{ad}\Omega_{bc}\Gamma^{2\,\delta\gamma}\Psi^{k\,cd}{}_{\gamma}(x)$

▶ two-point function

$$C^{\gamma\gamma'}(t) \equiv \sum_{\vec{x}} \langle \mathcal{O}_{CB}^{\gamma}(x) \overline{\mathcal{O}_{CB}^{\gamma'}}(0) \rangle \qquad \text{Parity projectors:} \\ = -\sum_{\vec{x}} \left(\Gamma^2 S_{\Psi^{-c'd'}}^{k\,cd}(x,0) \overline{\Gamma^2} \right)_{\gamma\gamma'} \Omega_{cb} \Omega^{b'c'} \Omega_{ad} \Omega^{d'a'} \qquad P_e \equiv \frac{1}{2} (1+\gamma) \\ \times \operatorname{Tr} \left[\Gamma^1 S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_o \equiv \frac{1}{2} (1-\gamma) \\ \text{At large Euclidean time} \qquad \rightarrow P_e \left[c_e e^{-m_e t} + c_o e^{-m_o(T-t)} \right] - P_o \left[c_o e^{-m_o t} + c_e e^{-m_e(T-t)} \right] \\ = -\sum_{\vec{x}} \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{a}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{b}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{b}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} (1-\gamma) \left[\Gamma^{-1} S_Q^{b}_{b'}(x,0) \overline{\Gamma^1} S_Q^{b}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} \left[\Gamma^{-1} S_Q^{b}_{a'}(x,0) \overline{\Gamma^1} S_Q^{b}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} \left[\Gamma^{-1} S_Q^{b}_{a'}(x,0) \overline{\Gamma^1} S_Q^{b}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} \left[\Gamma^{-1} S_Q^{b}_{a'}(x,0) \overline{\Gamma^1} S_Q^{b}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} \left[\Gamma^{-1} S_Q^{b}_{a'}(x,0) \overline{\Gamma^1} S_Q^{b}_{a'}(x,0) \right] \qquad P_{c'} = \frac{1}{2} \left[\Gamma^{-1} S_Q^{b}_{a'}(x,$$

Results: chimera baryons Spin projection

• Spin projector for Σ -type baryon:

$$\left(P^{3/2}\right)^{ij} = \delta^{ij} - \frac{1}{3}\gamma^i\gamma^j$$

$$\left(P^{1/2}\right)^{ij} = \frac{1}{3}\gamma^i\gamma^j$$

• Two-point function

$$\begin{split} C_{ij}(t) &= \sum_{\vec{x}} \left\langle \mathcal{O}_{\text{CB}}^{i}(x) \bar{\mathcal{O}}_{\text{CB}}^{j}(0) \right\rangle \text{ with } \mathcal{O} \\ &\to C_{\Sigma}^{1/2}(t) = \text{Tr} \left[\left(P^{1/2} \right)^{ij} C_{jk}(t) \right] \end{split}$$

 $\widehat{\mathcal{P}}_{CB}^{i} = \left(\bar{\psi}\gamma^{i}\psi\right)\chi$

Quenched ensembles

Ensemble	β	$N_t \times N_s^3$	$\langle P \rangle$	w_0/a
QB1	7.62	48×24^3	0.6018898(94)	1.448(3)
QB2	7.7	60×48^3	0.6088000(35)	1.6070(19)
QB3	7.85	60×48^3	0.6203809(28)	1.944(3)
QB4	8.0	60×48^3	0.6307425(27)	2.3149(12)
QB5	8.2	60×48^3	0.6432302(25)	2.8812(21)

Dynamical fundamental ensembles

Ensemble	β	am_0	$N_t \times N_s^3$	$\delta_{ m traj}$	$\langle P \rangle$	w_0/a	$am_{\rm PS}$
DB1M5	6.9	-0.91	32×16^{3}	20	0.55951(5)	0.9671(10)	0.4823(10)
DB1M6	6.9	-0.92	32×24^3	28	0.56204(3)	1.0375(16)	0.3868(12)
DB1M7	6.9	-0.924	32×24^3	12	0.56328(4)	1.07023(54)	0.34198(85)
DB2M1	7.05	-0.835	36×20^3	20	0.575267(29)	1.1881(18)	0.43797(99)
DB2M2	7.05	-0.85	36×24^3	24	0.577371(23)	1.2949(25)	0.32938(88)
DB2M3	7.05	-0.857	36×32^3	20	0.578324(13)	1.3580(14)	0.27256(69)
DB2M4	7.05	-0.863	36×36^3	16	0.579186(18)	1.4281(19)	0.2104(16)
DB3M3	7.2	-0.76	36×16^3	20	0.58767(4)	1.3898(26)	0.4698(11)
DB3M4	7.2	-0.77	36×24^3	20	0.588461(19)	1.4341(40)	0.42212(49)
DB3M5	7.2	-0.78	36×24^3	12	0.589257(20)	1.4980(11)	0.36992(64)
DB3M6	7.2	-0.79	36×24^3	20	0.590084(18)	1.5803(14)	0.31408(70)
DB3M7	7.2	-0.794	36×28^3	12	0.590429(9)	1.6154(11)	0.28585(49)
DB3M8	7.2	-0.799	40×32^3	12	0.590869(9)	1.6606(12)	0.2511(10)
DB3M9	7.2	-0.803	42×36^3	12	0.591226(6)	1.7156(15)	0.22063(52)
DB4M1	7.4	-0.72	48×32^3	12	0.604999(7)	1.9666(23)	0.32076(47)
DB4M2	7.4	-0.73	48×32^3	12	0.605519(7)	2.0519(30)	0.27119(44)
DB4M3	7.4	-0.74	48×36^3	12	0.606058(6)	2.1847(24)	0.21375(52)
DB5M1	7.5	-0.69	48×24^3	12	0.611900(13)	2.1484(72)	0.32600(73)

Dynamical antisymmetric ensembles

Ensemble	β	$am_0^{(as)}$	$N_t \times N_s^3$	$\delta_{ m traj}$	$\langle P \rangle$	w_0/a	am_{ps}
ASB1M4	6.65	-1.07	48×24^3	16	0.587787(17)	2.5957(79)	0.41224(74)
ASB1M5	6.65	-1.075	48×28^3	12	0.589623(11)	3.057(10)	0.33700(80)
ASB1M6	6.65	-1.08	48×32^3	12	0.591451(10)	3.595(21)	0.25391(91)
ASB2M7	6.7	-1.055	48×24^3	12	0.590599(15)	2.6325(92)	0.42644(73)
ASB2M8	6.7	-1.06	48×24^3	12	0.592152(13)	2.908(11)	0.3627(11)
ASB2M9	6.7	-1.063	54×28^3	20	0.593154(13)	3.413(17)	0.3156(10)
ASB2M10	6.7	-1.065	54×32^3	12	0.593758(9)	3.607(12)	0.2862(10)
ASB2M11	6.7	-1.067	54×32^3	8	0.594443(7)	3.6981(84)	0.25826(66)
ASB2M12	6.7	-1.069	54×36^3	12	0.595063(7)	4.316(11)	0.22111(77)
ASB3M2	6.75	-1.041	54×24^3	20	0.593531(15)	2.6343(82)	0.43385(83)
ASB3M3	6.75	-1.046	54×24^3	12	0.595008(12)	3.079(13)	0.3697(10)
ASB3M4	6.75	-1.051	54×28^3	8	0.596339(10)	3.586(14)	0.30785(82)
ASB3M5	6.75	-1.055	54×32^3	8	0.597567(8)	4.056(12)	0.25347(44)
ASB4M3	6.8	-1.03	54×24^3	12	0.597270(13)	2.9382(84)	0.40463(85)
ASB4M4	6.8	-1.035	56×24^3	8	0.598552(10)	3.343(11)	0.34478(81)
ASB4M5	6.8	-1.04	54×32^3	8	0.599812(8)	3.705(14)	0.29058(92)
ASB4M7	6.8	-1.046	54×36^3	12	0.601392(7)	4.616(13)	0.21492(56)

Results: chimera baryons Projection-Parity

The log plot of the chimera baryon correlators (left) and their effective mass plot (right) with the parity projection.

 $C_{\text{CB}}(t) \rightarrow P_e \left[c_e e^{-m_e t} + c_o e^{-m_o (T-t)} \right] - P_o \left[c_o e^{-m_o t} + c_e e^{-m_e (T-t)} \right]$

Results: chimera baryons Massless-continuum limit

Figure: The mass of three chimera baryons, Λ_{CB} , Σ_{CB} , and Σ_{CB}^* , as a function of $\hat{m}_{\rm PS}^2$ (left) and $\hat{m}_{\rm ps}^2$ (right), in the limit where the lattice spacing vanishes, while $\hat{m}_{ps}^2 = 0$ (left) and $\hat{m}_{PS}^2 = 0$ (right).

CB	Ansatz	$\hat{m}^{\chi}_{ ext{CB}}$	F_2	A_2	L_1	F_3	A_3	L_{2F}	L_{2A}	C_4
$\Lambda_{ m CB}$	MC4	1.004(30)	0.692(67)	0.384(12)	-0.14(46)	-0.14(33)	-0.092(46)	0.091(76)	0.003(13)	-0.024(60)
$\Sigma_{\rm CB}$	MC4	0.842(21)	0.806(81)	0.558(13)	-0.14(33)	-0.24(68)	-0.162(77)	0.193(62)	-0.01(16)	-0.079(62)
$\Sigma_{\rm CB}^*$	M3	1.258(35)	0.36(10)	0.391(31)	-0.33(53)	-0.06(85)	-0.12(16)	0.335(86)	0.006(30)	-

Results: mesons

Dynamical simulations

