

Progress in lattice simulations for two Higgs doublet models

Guilherme Catumba Atsuki Hiraguchi; George W.-S. Hou; Karl Jansen; Ying-Jer Kao; C.-J. David Lin; Alberto Ramos; Mugdha Sarkar

> IFIC – Valencia NYCU – Hsinchu

SU(2) Two Higgs Doublet model – Motivation

4D SU(2) gauge theory with 2 fundamental Higgs

- Single Scalar simplest way to generate EWSB
- Minimal SM extension possible features
 - ✤ First-order EWPT (?) Baryogenesis
 - \clubsuit New source of CP violation
- Enlarged spectrum
- Mimics the SM at low energies

SU(2) Two Higgs Doublet model – Motivation

4D SU(2) gauge theory with 2 fundamental Higgs

- Single Scalar simplest way to generate EWSB
- Minimal SM extension possible features
 - ✤ First-order EWPT (?) Baryogenesis
 - \clubsuit New source of CP violation
- Enlarged spectrum
- Mimics the SM at low energies

Fundamental Representation and Gauge Fields

$$\Phi_i(x) = \begin{pmatrix} \phi_i^+(x) \\ \phi_i^0(x) \end{pmatrix} \quad i = 1, 2,$$

$$D_\mu = \partial_\mu + \mathbb{A}_\mu,$$

$$G_{\mu\nu} = \partial_\mu \mathbb{A}_\nu - \partial_\nu \mathbb{A}_\mu + [\mathbb{A}_\mu, \mathbb{A}_\nu]$$

$$\mathbb{A}_{\mu} = -igA^a_{\mu}\sigma_a/2,$$

SU(2) Two Higgs Doublet model – Scalar Potential

$$\begin{aligned} \mathcal{L}_{\text{2HDM}} &= \left(D_{\mu}\Phi_{1}\right)^{\dagger} \left(D_{\mu}\Phi_{1}\right) + \left(D_{\mu}\Phi_{2}\right)^{\dagger} \left(D_{\mu}\Phi_{2}\right) \\ &+ V_{\text{2HDM}} - \frac{1}{2g^{2}} \operatorname{Tr}[G_{\mu\nu}G_{\mu\nu}] \end{aligned}$$

$$\begin{split} V_{2\text{HDM}} &= \\ \mu_{11}^2(\Phi_1^{\dagger}\Phi_1) + \mu_{22}^2(\Phi_2^{\dagger}\Phi_2) + \mu_{12}^2 \operatorname{Re}(\Phi_1^{\dagger}\Phi_2) \\ &+ \eta_1(\Phi_1^{\dagger}\Phi_1)^2 + \eta_2(\Phi_2^{\dagger}\Phi_2) + \eta_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2) + \eta_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) \\ &+ \eta_5 \operatorname{Re}(\Phi_1^{\dagger}\Phi_2)^2 + \operatorname{Re}(\Phi_1^{\dagger}\Phi_2) \left[\eta_6(\Phi_1^{\dagger}\Phi_1) + \eta_7(\Phi_2^{\dagger}\Phi_2) \right] \end{split}$$

$$\begin{split} V_{2\text{HDM}} &= \\ \mu_{11}^2 (\Phi_1^{\dagger} \Phi_1) + \mu_{22}^2 (\Phi_2^{\dagger} \Phi_2) + \mu_{12}^2 \operatorname{Re}(\Phi_1^{\dagger} \Phi_2) \\ &+ \eta_1 (\Phi_1^{\dagger} \Phi_1)^2 + \eta_2 (\Phi_2^{\dagger} \Phi_2) + \eta_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \eta_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \eta_5 \operatorname{Re}(\Phi_1^{\dagger} \Phi_2)^2 + \operatorname{Re}(\Phi_1^{\dagger} \Phi_2) \left[\eta_6 (\Phi_1^{\dagger} \Phi_1) + \eta_7 (\Phi_2^{\dagger} \Phi_2) \right] \end{split}$$

- Most general case: SU(2) global symmetry
- Previous lattice studies $SU(2) \times SU(2)$ global symmetry:
 - \blacktriangleleft Phase structure & SSB
 - [Lewis and Woloshyn 2010]
 - Wurtz, Lewis, and Steele 2009]
- No previous study of the spectrum

$$V_{2\text{HDM}} = \mu_{11}^{2}(\Phi_{1}^{\dagger}\Phi_{1}) + \mu_{22}^{2}(\Phi_{2}^{\dagger}\Phi_{2}) + \mu_{12}^{2}\operatorname{Re}(\Phi_{1}^{\dagger}\Phi_{2}) + \eta_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \eta_{2}(\Phi_{2}^{\dagger}\Phi_{2}) + \eta_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \eta_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \eta_{5}\operatorname{Re}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + \operatorname{Re}(\Phi_{1}^{\dagger}\Phi_{2}) \left[\eta_{6}(\Phi_{1}^{\dagger}\Phi_{1}) + \eta_{7}(\Phi_{2}^{\dagger}\Phi_{2})\right]$$

- $O(4) \sim SU(2)_L \times SU(2)_R$ custodial symmetry
 - Haber and O'Neil 2011]

$$\bullet \quad \eta_4 = \eta_5$$

Same symmetry as the SM

$$\begin{split} V_{2\text{HDM}} &= \\ \mu_{11}^2 (\Phi_1^{\dagger} \Phi_1) + \mu_{22}^2 (\Phi_2^{\dagger} \Phi_2) + \mu_{12}^2 \operatorname{Re}(\Phi_1^{\dagger} \Phi_2) \\ &+ \eta_1 (\Phi_1^{\dagger} \Phi_1)^2 + \eta_2 (\Phi_2^{\dagger} \Phi_2) + \eta_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \eta_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \eta_5 \operatorname{Re}(\Phi_1^{\dagger} \Phi_2)^2 + \operatorname{Re}(\Phi_1^{\dagger} \Phi_2) \cdot \left[\eta_6 (\Phi_1^{\dagger} \Phi_1) + \eta_7 (\Phi_2^{\dagger} \Phi_2) \right] \end{split}$$

- Discrete \mathbb{Z}_2 symmetries: $\mu_{12} = \eta_6 = \eta_7 = 0$
 - $\Phi_1 \longrightarrow -\Phi_1$
 - $\Phi_2 \longrightarrow -\Phi_2$
- Inert Model: $\mathbb{Z}_2 imes \mathbb{Z}_2$ symmetric [Deshpande and Ma 1978]
 - \bullet Z₂ and FCNC [Hou and Kikuchi 2018]
 - ✤ Dark matter model [Honorez et al. 2007]

Lattice action & Simulation details

Quaternion representation:

$$\Phi_n(x) = \frac{1}{\sqrt{2}} \sum_{\alpha=0}^N \theta_\alpha \phi_\alpha^{(n)}(x),$$

$$\theta_0 = 1_{2 \times 2}, \quad \theta_i = i\sigma_i$$

$$S_{2\text{HDM}}^{O(4)} = S_{\text{Wilson}} + \sum_{x} \sum_{n=1}^{2} \left\{ \sum_{\mu} -2\kappa_{n} \operatorname{Tr} \left(\hat{\Phi}_{n}^{\dagger} U_{\mu} \hat{\Phi}_{n}(x+\hat{\mu}) \right) + \operatorname{Tr} \left(\hat{\Phi}_{n}^{\dagger} \hat{\Phi}_{n} \right) + \hat{\eta}_{n} \left[\operatorname{Tr} \left(\hat{\Phi}_{n}^{\dagger} \hat{\Phi}_{n} \right) - 1 \right]^{2} \right\} + 2\mu^{2} \operatorname{Tr} \left(\hat{\Phi}_{1}^{\dagger} \hat{\Phi}_{2} \right) + \hat{\eta}_{3} \operatorname{Tr} \left(\hat{\Phi}_{1}^{\dagger} \hat{\Phi}_{1} \right) \operatorname{Tr} \left(\hat{\Phi}_{2}^{\dagger} \hat{\Phi}_{2} \right) + \hat{\eta}_{4} \operatorname{Tr} \left(\hat{\Phi}_{1}^{\dagger} \hat{\Phi}_{2} \right)^{2}$$

HMC w/ GPU [igit.ific.uv.es/gtelo/latticegpu.jl/-/tree/su2-higgs]
 Error analysis [igit.ific.uv.es/alramos/aderrors.jl]

Phase structure & Spectrum

 κ_2 (H_2) $SU(2) \times (\mathbb{Z}_2)^2$ $\langle \Phi_1 \rangle = 0$ $\langle \Phi_2 \rangle \neq 0$ Tree Level: $-\frac{\hat{\eta}_2}{4}$ $\frac{1}{8}$ κ_2^c $SU(2) \times (\mathbb{Z}_2)^2$ $SU(2) \times (\mathbb{Z}_2)^2$ $\langle \Phi_2 \rangle = 0$ QCD-like $\langle \Phi_1 \rangle = 0$ $-m_{1^-} > m_{0^+}$ (H_1) κ_1^c κ_1

 $\begin{array}{l} \left\langle \Phi_1 \right\rangle \neq 0 \\ \left\langle \Phi_2 \right\rangle \neq 0 \end{array}$

Phase structure & Spectrum

 (H_2)

 $SU(2) \times (\mathbb{Z}_2)^2$

 κ_2

 $\langle \Phi_1 \rangle = 0$

 $\langle \Phi_1 \rangle = 0$

 $\begin{array}{l} \langle \Phi_2 \rangle \neq 0 \\ \langle \Phi_2 \rangle \neq 0 \end{array} \\ \hline \\ \text{Tree Level:} \\ \hline \frac{1}{8} - \frac{\hat{\eta}_2}{4} \\ \langle \Phi_2 \rangle = 0 \end{array} \\ \begin{array}{l} \text{- Degenerate W-boson} \\ \text{- SM Higgs m_h} \\ \text{- BSM scalar m_H} \\ \text{- 3 degenerate BSM} \\ \text{scalars $m_A = m_{H^{\pm}}$} \\ \hline \\ SU(2) \times (\mathbb{Z}_2)^2 \\ \hline \\ OCD \ \text{like} \end{array}$

BSM scalar m_H scalars $m_A = m_{H^{\pm}}$ $SU(2) \times (\mathbb{Z}_2)^2$ $SU(2) \times (\mathbb{Z}_2)^2$ $m_W^2 = g^2 v^2 / 4$ $m_{h}^{2} = \eta_{1}v^{2}$ $m_H^2 = m_{H^\pm} + \eta_3 v^2$ QCD-like (similar to H_2) $m_{1^-} > m_{0^+}$ (H_1) κ_1^c κ_1

 $\langle \Phi_1 \rangle \neq 0$

 $\langle \Phi_2 \rangle \neq 0$

Phase structure & Spectrum

 $\begin{array}{l} \langle \Phi_1 \rangle = 0 \\ \langle \Phi_2 \rangle \neq 0 \end{array}$ $\begin{array}{c} \text{Tree Level:} \\ \hline \frac{1}{8} - \frac{\hat{\eta}_2}{4} \end{array} \quad \kappa_2^c \end{array}$

	κ_2			
	102	(H_2)	(H_{12})	
0 0	К ^с	$SU(2) \times (\mathbb{Z}_2)^2$ - Degenerate W-boson - SM Higgs m_h - BSM scalar m_H - 3 degenerate BSM scalars $m_A = m_H \pm$	 3 non-degenerate 1⁻ 3 Goldstone Bosons 2 scalar states m_h, m_H 	$\begin{array}{l} \langle \Phi_1 \rangle \neq 0 \\ \langle \Phi_2 \rangle \neq 0 \end{array}$
	102	$SU(2) imes (\mathbb{Z}_2)^2$	$SU(2) \times (\mathbb{Z}_2)^2$	$m_W^2=g^2v^2/4\ m_h^2=\eta_1v^2$
0 0		- QCD-like - $m_{1^-} > m_{0^+}$	(similar to H_2)	$\begin{split} m_{H}^{2} &= m_{H^{\pm}} + \eta_{3} v^{2} \\ m_{H^{\pm}}^{2} &= \mu_{22}^{2} + \frac{1}{2} \lambda_{3} v^{2} \\ m_{a}^{2} &= m_{H^{\pm}} \end{split}$
		(H_0)	(H_1)	
		ĸ	.с <i>к</i> "1	21

Observables

Phase Diagram

✤ Gauge invariant link

$$L^{a}_{\alpha_{nm}} = \frac{1}{8V} \sum_{x,\mu} \operatorname{Tr}\left\{\alpha^{\dagger}_{n}(x)U_{\mu}(x)\alpha_{m}(x+\hat{\mu})\theta^{a}\right\}$$

$$L_{\alpha_n} \equiv L^4_{\alpha_{nn}}$$

Observables

Phase Diagram

 \blacklozenge Gauge invariant link

$$L^{a}_{\alpha_{nm}} = \frac{1}{8V} \sum_{x,\mu} \operatorname{Tr}\left\{\alpha^{\dagger}_{n}(x)U_{\mu}(x)\alpha_{m}(x+\hat{\mu})\theta^{a}\right\}$$

$$L_{\alpha_n} \equiv L^4_{\alpha_{nn}}$$

Spectrum of the theory

$$S_{ij}^{a}(x^{4}) = \sum_{\vec{x}} \operatorname{Tr}\left[\Phi_{i}^{\dagger}(x)\Phi_{j}(x)\theta^{\alpha}\right]$$
$$W_{ij,\mu}^{a}(x^{4}) = \sum_{\vec{x}} \operatorname{Tr}\left[\Phi_{i}^{\dagger}(x)U_{\mu}(x)\Phi_{j}(x+\hat{\mu})\theta^{\alpha}\right]$$

 $S^4_{ii}, \ W^4_{ii} \to 0^+, \qquad W^4_{ij} \to 0^+ \ (i \neq j), \qquad W^k_{ii} \to 1^-.$

• Gradient flow and Laplacian smearing for $U_{\mu}(x), \Phi(x)$

$Constant SM_{sector} M_{(H_2)}$ physics

Standard Model physics on the lattice

$$R = \left(\frac{m_h}{m_W}\right)_{\text{latt}} = \left(\frac{m_h}{m_W}\right)_{\text{phys}} = 1.5$$
$$S = \left(\frac{m_W}{\mu_0}\right)_{\text{latt}} = \left(\frac{m_W}{\mu_0}\right)_{\text{phys}} = 1.0, \quad g_{\text{GF}}^2(\mu_0)\Big|_{m_W} = 0.5$$

Standard Model physics on the lattice

$$R = \left(\frac{m_h}{m_W}\right)_{\text{latt}} = \left(\frac{m_h}{m_W}\right)_{\text{phys}} = 1.5$$
$$S = \left(\frac{m_W}{\mu_0}\right)_{\text{latt}} = \left(\frac{m_W}{\mu_0}\right)_{\text{phys}} = 1.0, \quad g_{\text{GF}}^2(\mu_0)\Big|_{m_W} = 0.5$$

Gradient Flow – Non perturbative gauge running coupling

$$\mu_0 = \frac{1}{\sqrt{8t_0}}, \qquad g_{GF}^2(\mu) \equiv \frac{128\pi^2}{9} t^2 \langle E(t) \rangle \Big|_{t=1/8\mu^2}$$

Flowed gauge action density (Clover)

$$\langle E(x,t)\rangle = -\frac{1}{4} \langle G^a_{\mu\nu}(x,t)G^a_{\mu\nu}(x,t)$$

$$t^{2} \langle E(t) \rangle = \frac{9}{128\pi^{2}} g_{\overline{MS}}^{2}(\mu) (1 + \mathcal{O}(g^{2})) \Big|_{\mu = 1/\sqrt{8t}}$$

Tuning SM physics

 $\{\beta, \kappa_2, \eta_2\}$

- Scalar interpolator with VEV decreased precision
- Precise vector mass and GF scale
- Scale setting with $a = m_W^{\text{phys}} / \hat{m}_W$

$$\Lambda \sim 300 - 620 \text{ GeV}$$

Running Gauge coupling

$$g_{\rm Y}^2(\mu) = \left. r^2 \frac{\mathrm{d}V_{\rm Y}}{\mathrm{d}r} \right|_{\mu=1/r} \qquad \qquad V_{\rm Y}(r) \propto \frac{1}{4\pi r} e^{-mr}$$

$$\beta_{SU(N)+\text{Scalars}} = \mu \frac{\mathrm{d}g}{\mathrm{d}\mu} = -\frac{b_0 g^3}{16\pi^2} + \mathcal{O}(g^5), \ \ b_0 = \frac{11N - n_s}{3}$$

Scan BSM sector

LCP defined with $\{\beta, \kappa_2, \eta_2\}$

Scan BSM sector

- LCP defined with $\{\beta, \kappa_2, \eta_2\}$
- Remaining couplings control the BSM spectrum scan κ_1

Scan BSM sector

- LCP defined with $\{\beta, \kappa_2, \eta_2\}$
- Remaining couplings control the BSM spectrum scan κ_1

Non-SM SU(2) SSB: $(H_2) \longrightarrow (H_{12})$

Scans BSM sector – SM conditions

- Small quartics SM physics roughly unchanged
- Large range of κ_1

Scans BSM sector – BSM masses

▶ Light scalar masses – roughly cutoff independent
 ▶ Near PT: S^j₁₂ → Goldstones

Scans BSM sector – BSM masses

- Light scalar masses roughly cutoff independent
- Near PT: $S_{12}^j \longrightarrow$ Goldstones
- Could there be un-detected light scalars?

 Answer not definitive [CMS, arXiv:2405.18149] [ATLAS, arXiv:2407.07546]

Finite Temperature

Finite Temperature

- Simulate at $N_t < L T = \frac{1}{aN_t}$
- L_{α_2} signals Higgs mechanism

Finite Temperature

Simulate at $N_t < L - T = \frac{1}{aN_t}$

L_{α_2} signals Higgs mechanism

$$L^R_{\alpha}(T) = Z(g_i) L^{\text{Latt}}_{\alpha}(T, g_i)$$

Finite Temperature – Volume Dependence

$$\chi_O(L) = L^3 \left(\left\langle O^2 \right\rangle - \left\langle O \right\rangle^2 \right)$$

- Susceptibility is volume independent
- Crossover behavior

Finite Temperature – Volume Dependence

$$\chi_O(L) = L^3 \left(\left\langle O^2 \right\rangle - \left\langle O \right\rangle^2 \right)$$

- Susceptibility is volume independent
- Crossover behavior
- Conflict w/ PT predictions (?) [Bernon, Bian, and Jiang 2018]

Conclusions

- Knowledge of the parameter space
- Framework ready to study any 2HDM
- Constant SM line for Custodial 2HDM
- Light BSM scalars realizable within SM physics
- Crossover EWPT (larger cutoff required)

Future plans

 $\mathcal{O}(1)$ quartic couplings for first-order EWPT

[Hou and Kikuchi 2018]

Complicates tuning – compute renoremalized quartic couplings

β	8.2	8.3	8.4	8.56	8.64
κ_2	0.13175	0.13104	0.1306	0.1301	0.129985
η_2	0.00338	0.003	0.00285	0.00275	0.002737
R	1.509(94)	1.527(80)	1.494(65)	1.504(39)	1.462(53)
S	1.0055(98)	0.9956(65)	0.994(14)	0.994(20)	0.9958(94)
am_h	0.402(28)	0.363(21)	0.305(16)	0.2192(84)	0.1863(75)
am_W	0.2666(26)	0.2377(15)	0.2041(29)	0.1458(29)	0.1275(11)
t_0/a^2	1.7781(58)	2.1934(74)	2.966(13)	5.810(45)	7.626(43)
$\Lambda ~({\rm GeV})$	301.5(29)	338.2(21)	393.8(57)	551(11)	630.4(56)
mL	8.485(14)	7.639(13)	6.569(15)	4.694(18)	6.145(17)

BSM masses physical units

- P Degenerate scalars $m_A = m_{H^{\pm}} \approx m_H$
- $h_{\rm BSM}\sim 350~{\rm GeV}$
- EWPT shows crossover behavior
- Contrarily to PT prediction [Bernon, Bian, and Jiang 2018]

Scan BSM sector: $(H_2) \longrightarrow (H_{12})$

Scan BSM sector: $(H_2) \longrightarrow (H_{12})$

- L_{α_1} not a good observable to study SSB
- Multiple vacua (?) [Lewis and Woloshyn 2010]
- Explicit breaking & extrapolation required to evaluate SSB

$$\varepsilon \operatorname{Tr}\left[\Phi_{1}^{\dagger}(x)\Phi_{2}(x)\theta^{3}\right], \quad \varepsilon \to 0$$

$SSB(H_2) \longrightarrow (H_{12})$ (Explicit breaking)

- Evidence for SSB
- Not conclusive! Thermodynamic limit required

$SSB(H_2) \longrightarrow (H_{12})$ (Explicit breaking)

- Evidence for SSB
- Not conclusive! Thermodynamic limit required

Scans BSM sector – Finite volume

- No Goldstones in this regime
- Finite volume effects under control for m_H

Scans BSM sector – Cutoff & Crossover Region

Cutoff unaffected up to $\sim PT$ region

Lagrangian and Phase structure - Single Higgs

$$S = S_{\rm YM}[U; \boldsymbol{\beta}] + \sum_{x} \left\{ \sum_{\mu} -2\kappa \operatorname{Tr} \left(\hat{\Phi}^{\dagger}(x) U_{\mu}(x) \hat{\Phi}(x+\hat{\mu}) \right) \right. \\ \left. + \operatorname{Tr} \left(\hat{\Phi}^{\dagger}(x) \hat{\Phi}(x) \right) + \lambda \left[\operatorname{Tr} \left(\hat{\Phi}^{\dagger}(x) \hat{\Phi}(x) \right) - 1 \right]^{2} \right\}$$

- $\beta = 4/g^2$ $a^2\mu^2 = \frac{1-2\eta-8\kappa}{\kappa}$ $\lambda = \eta/\kappa^2$
- Confinement & Higgs
- Analytically connected

[M. Wurtz et al, Phys.Rev.D 79 (2009) 074501]

Physical conditions & Continuum limit – Single Higgs theory

 $m_H/m_W \approx 1.5$ $g_{GF}^2(\mu = m_W) = 0.5, \ m_W/\mu = 1.0$

Physical conditions & Continuum limit – Single Higgs theory

 $m_H/m_W \approx 1.5$ $g_{GF}^2(\mu = m_W) = 0.5, \ m_W/\mu = 1.0$

Running coupling $g_{GF}^2(\mu)$ – Single Higgs theory

Fields & Couplings – Lattice action

$$\Phi_n(x) = \frac{\hat{k}_n}{a} \hat{\Phi}_n(x), \qquad a^2 \mu_{nn}^2 = \frac{1 - 2\hat{\eta}_n - 8\hat{k}_n}{\hat{k}_n}, \qquad \eta_n = \frac{\hat{\eta}_n}{\hat{k}_n^2}.$$

$$a^2 \mu_{12}^2 = \hat{\mu}_{12}^2, \qquad \eta_n = \frac{\dot{\eta}_n}{\hat{k}_1 \hat{k}_2}, \quad n = 3, 4, 5$$

$$\eta_6 = \frac{\hat{\eta}_6}{\hat{k}_1^{3/2} \hat{k}_2^2}, \qquad \qquad \eta_7 = \frac{\hat{\eta}_7}{\hat{k}_1^{1/2} \hat{k}_2^3}.$$

RGEs for the Inert Model

$$\begin{split} 8\pi^2 \frac{\mathrm{d}\lambda_1}{\mathrm{d}t} &= (N+4)\lambda_1^2 + N\lambda_3^2 + 2\lambda_3\lambda_4 + \lambda_4^2 + \lambda_5^2 - \frac{3(N^2-1)}{N}\lambda_1 g^2 + \frac{3(N-1)(N^2+2N-2)}{4N^2}g^4 \\ 8\pi^2 \frac{\mathrm{d}\lambda_2}{\mathrm{d}t} &= (N+4)\lambda_2^2 + N\lambda_3^2 + 2\lambda_3\lambda_4 + \lambda_4^2 + \lambda_5^2 - \frac{3(N^2-1)}{N}\lambda_2 g^2 + \frac{3(N-1)(N^2+2N-2)}{4N^2}g^4 \\ 8\pi^2 \frac{\mathrm{d}\lambda_3}{\mathrm{d}t} &= [(N+1)\lambda_3 + \lambda_3](\lambda_1 + \lambda_2) + 2\lambda_3^2 + \lambda_4^2 + \lambda_5^2 - \frac{3(N^2-1)}{N}\lambda_3 g^2 + \frac{3(N^2+2)}{4N^2}g^4 \\ 8\pi^2 \frac{\mathrm{d}\lambda_4}{\mathrm{d}t} &= \lambda_4(\lambda_1 + \lambda_2) + 4\lambda_3\lambda_4 + N\lambda_4^2 + (N+2)\lambda_5^2 - \frac{3(N^2-1)}{N}\lambda_4 g^2 + \frac{3(N^2+2)}{4N^2}g^4 \\ 8\pi^2 \frac{\mathrm{d}\lambda_5}{\mathrm{d}t} &= \lambda_5[(\lambda_1 + \lambda_2) + 4\lambda_3 + 2(N+1)\lambda_4 - \frac{3(N^2-1)}{N}\lambda_5 g^2 \end{split}$$

O(4) condition:

$$8\pi^2 \frac{\mathrm{d}(\eta_4 - \eta_5)}{\mathrm{d}t} = 2(\eta_4^2 + 2\eta_5^2 - 3\eta_4\eta_5) + (\eta_4 - \eta_5) \left[2\eta_1 + 2\eta_2 + 4\eta_3 - 9/2g^2\right].$$