

Finite Temperature Transition in Hyper Stealth Dark Matter **Using Mobius Domain Wall fermions**

Sungwoo Park Lawrence Livermore National Laboratory

Nobuyuki Matsumoto, Venkitesh Ayyar and [LSD Collaboration], 08/02/2024, Lattice 2024

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-867632

Motivation strongly interacting dark matter and gravitational wave

- Dark matter existence is shown from many evidences (Galaxy rotational curve, bullet clusters)
 - Strongly coupled dark gauge theory can provide solutions to the small-scale structure issue
 - 1st order phase transition of the strongly interacting dark matter in the early universe can be the source of the gravitational wave that we are observing

Hyper Stealth Dark Matter (HSDM) **SU(4)** gauge theory with $N_f = 1$

- Stealth Dark Matter: LSD, PhysRevD.92.075030(2015) SM particles
- Here we are going to study 1-flavor theory (HSDM) Fleming, Kribs, Neil, Schaich, Vranas, in preparation
 - the lightest meson η' mass is not small, no chiral transition

SU(4) 4-dark quark bosonic baryon as a composite DM candidate, coupled via EW to

LSD, PhysRevD.103.014505(2021) • Previous finite T study with SU(4) 4-flavor found 1st order phase transition at $am_f \ge 0.4$.

• No spontaneous chiral symmetry breaking as $U_A(1)$ broken explicitly by the anomaly,

• Stable baryon protected from decay by $U_V(1)$, Expected baryon mass is ~few GeV

Simulation details

- algorithm with Wilson gauge action
- Grid (github.com/paboyle/Grid), Hadron (github.com/aportelli/ Hadrons)
- LLNL GPU clusters: Tioga (AMD MI250x), Lassen (NVIDIA V100)
- Update on the finite T study from last year Venkitesh Ayyar [LSD], Lattice 2023
 - Fermionic boundary condition, more statistics, chiral condensate
 - Wilson-flow (PL, Q) to reduce UV fluctuations with flow time $\sqrt{8t_W}/N_t \le 0.5$

Mobius Domain wall fermion (MDWF, Ls=16, b=1.5, c=0.5), 1flavor (EOFA) HMC

Statistics

•
$$am \in \{0.1, 0.4\},\ L^3 \in \{24^3, 32^3\}, N_t = 8$$
 fixed

- Cold ($U_{\mu} = 1$, $\langle PL \rangle = 1$) and Hot (U_{μ} = random, $\langle PL \rangle = 0$) initial gauge field streams
 - compare them to ensure thermalization
 - \geq 3000 trajectories required for thermalization near $\beta_{\rm crit}$

vol=24³ × 8, am=0.1000

vol=32³ × 8, am=0.1000

Chiral property of DWF Small eigenvalues in 5th dim $H_4(M_5) = \gamma_5 D_W(-M_5)$

- M_5 : 5th-dimensional mass representing the height of the domain wall
- L_s : 5th dimension length
 - $L_s \rightarrow \infty$, overlap, 4d chiral symmetric theory
 - finite L_s : chiral symmetry breaking remains, $m_{\rm res}$ (Residual mass, additive shift to the bare mass due to the chiral symmetry breaking)
- if $H_4(M_5) = \gamma_5 D_W(-M_5)$ has very small eigenvalues, the exponential decay will be overshadowed by slow power law decay even for very large
- small $|\lambda| \rightarrow \text{large } m_{\text{res}}$

M_5 tuning for small eigenvalues of $\gamma_5 D_W(-M_5)$ eye diagram: 10 smallest magnitude λ , at $24^3 \times 8$

Residual mass m_{res} : additive shift to the bare mass chiral symmetry breaking in DWF at $M_5 = 1.8$

- Effective $m_{\rm res}$ calculated from 2pt functions with source-sink separation in a spatial (x) direction
- am = 0.1 have a plateau at small 10^{-5} value,
- Effective m_{res} (am = 0.4) diverges with no plateau. We will need smaller am for safety, and the chiral symmetry restoration SU(3) study, JHEP04(2016)037, RBC

Polyakov Loop (PL) Deconfinement phase transition order parameter

- Volume averaged, Wilson-flowed PL (maximum= $N_c = 4$)
- $\beta_{\rm crit}$ from Wilson-flowed PL
 - Volume dependence negligible
 - $\beta_{\rm crit} \sim 10.8$ for am = 0.1
 - $\beta_{\rm crit} \sim 11.0$ for am = 0.4 and $am = \infty$ (pure gauge)

Polyakov Loop in Complex Plane spontaneous Z(4) sym breaking as deconfinement transition crossed

pure gauge limit (am=0.4)

Deconfinement Fraction

am=0.1

am=0.4

PL Susceptibility $\chi_{\rm max} \propto L^3$: Volume Scaling signature of 1st order phase transition

 $am = 0.1, \chi_{\rm max} \propto L^{3.2}$

Chiral condensate

• no chiral transition for $N_f = 1$

Topological Charge

Conclusion and Future Plan

- We studied chiral property of MDWF with a large fermion mass for SU(4) gauge theory from the eigenvalues of 5th dim hamiltonian $H_4(M_5)$ and m_{res} .
- We studied the finite temperature transition in HSDM, strongly interacting composite DM with 1-flavor SU(4) gauge theory. For this, we monitored various observables (PL, χ_{PL} , Q, $\langle \bar{\psi}\psi \rangle$)
- We found signatures of 1st order phase deconfinement phase transition that can be a source of the gravitational wave.
- Future plan
 - Latent heat, bubble wall velocity
 - Find the lowest limit of fermion mass that have 1st order phase transition
 - Zero temperature calculation for the hadronic mass calculation and scale setting
 - More statistics needed, checking autocorrelation