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Composite Higgs Models

In order to address the naturalness and hierarchy problems, introduce a new
sector into the SM, giving a dynamical origin to the electroweak spontanous
symmetry breaking.

The Higgs emerges as either a pseudo-Nambu-Goldstone boson or as a light
scalar resonance. These are not mutually exclusive, and the amount of mixing
between the two scenarios is controlled by the vacuum misalignment angle θ.

Scattering processes involving a potential new strong sector are expected to be
testable at the LHC.

“. . . ICFA reconfirms the international consensus on the importance of a
Higgs Factory as the highest priority for realizing the scientific goals of
particle physics . . . ”

— International Committee on Future Accelerators, 2022
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SU(2) with 2 Fundamental Flavours

Continuum Theory

L = −1

4
F a
µνF

µν
a + u(iγµDµ −m)u+ d(iγµDµ −m)d

The minimal model for the composite Higgs sector

Pseudoreal fundamental representation gives rise to the flavour symmetry
breaking structure SU(4)f → Sp(4)f

Can build testable composite Higgs models which are not excluded by
experiment. (eg [1402.0233])
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Research Aims

Long Term Goal

Understand how the properties of resonances in the composite Higgs
scenario would change the observable Higgs boson phenomenology at
the LHC.

Specifically here the flavour singlet scalar resonance in the new strongly
interacting sector (Oσ = uu+ dd), which we call the σ in analogy with QCD.
In the composite Higgs scenario, the σ is predicted to be produced at the LHC
similarly to the SM Higgs.

Understanding the role of the σ in the composite Higgs sector in isolation will
provide insight into the many low-energy constants of the effective theory at
the EW scale, and provide valuable constraints on parameter space.
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Previous Work

Previously studied on the lattice
with unimproved Wilson
fermions, but exhibited
significant order-a effects,
prompting a move to a tuned
order-a improved action in order
to go more chiral. [1602.06559]

The scattering amplitude of the
σ was studied on the lattice with
tree-level Wilson clover fermions
and a tree-level Symanzik
improved gauge action. The σ
was shown to be stable up to
mv
mps

< 2.5. [2107.09974]

=⇒ See Sofie’s talk next for progress towards the continuum limit!
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Lattice Setup

Plaquette Gauge Action

Exponential Clover Wilson Fermions
Francis, Fritzsch, Lüscher, Rago [1911.04533]

M0 + cSW
i

4
σµνF̂µν → M0 exp

[
cSW
M0

i

4
σµνF̂µν

]
.

Enforces the diagonal part of the Wilson-Dirac operator to be positive and
gapped above zero, enhancing numerical stability.
O(a) improvement once cSW is tuned non-perturbatively.

Set the scale for the ensembles using the Wilson gauge flow.

Simulations performed using HiRep [github.com/claudiopica/HiRep]
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Tuning of cSW

cSW is now tuned for all β ≥ 2.15.

Non-perturbative tuning of cSW
via Schrodinger functional
simulations

A vast amount of our time spent
tuning (hundreds of thousands of
trajectories)

Find a value for κcrit by tuning
M =M0, and then find cSW at κcrit
by tuning ∆M = ∆M0.
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Strategy

Our goal is to identify a setup where the σ is likely to decay into two pions
and perform a Luscher scattering analysis.

We chose the coarsest lattice spacing that we had a tuned value of csw for,
which at the time was β = 2.2.

We then ran as chiral as we could at the volume 64× 323, where we use mV
mPS

as a measure for how chiral we are.

As a preliminary step, we then calculate at the effective mass of the σ from a
simple two-point correlation function.
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Measurement of the σ state

Flavour singlet state of positive parity

Oσ(x) = ψαic(x)ψαic(x) = uαc(x)uαc(x) + dαc(x)dαc(x)

Correlator has a disconnected term which must be evaluated〈
Oσ(x)Oσ(0)

〉
F
= 4Tr [S(x, x)] Tr [S(0, 0)]− 2Tr [S(0, x)S(x, 0)]

Use even-odd SEMWall sources for the connected term, and pure volume
sources for the disconnected term.

Z(2)⊗ Z(2) noise, ξ ∈ 1√
2
{1 + i, 1− i,−1 + i,−1− i}

σ has a VEV which has to be subtracted in the analysis

lim
T→∞

⟨Oσ(t)Oσ(0)⟩T =
∑
n

⟨0|Ôσ|n⟩⟨n|Ôσ|0⟩e−t∆En .
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Connected term: EO SEMWall sources

Introduce a set of N complex fields Ξτσk
αc (x) with support on only the even sites, on

a single timeslice τ and on a single spin index σ.[
ξk∗c (x⃗)ξkd(y⃗)

]
= δcdδx⃗y⃗

Let φτσk
αc (x) := Sαβcd(x, y)Ξ

τσk
βd (y)

(γ5)ρσ(γ5)αβ[φ
∗τσk
αc (x)φτρk

βc (x)] =
1

2

∑
y⃗

Tr[S((τ, y⃗), x)S(x, (τ, y⃗))]

where the γ5 appears because we use γ5-hermiticity.
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Disconnected term: volume sources

Introduce a set of N fields ξkαc(x), k = 1...N such that for any x, y, α, β, c, d[
ξk∗αc(x)ξ

k
βd(y)

]
= δαβδcdδxy

and let φk
αc(x) := Sαβcd(x, y)ξ

k
βd(y). Then

[ξ∗kαc(x)φ
k
αc(x)] = Tr[S(x, x)].

Use two copies of this (with independent stochastic sources) then sum over time
separations and subtract the gauge-averaged VEV to obtain the correlator.
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Ensemble

Geometry β mPS mV
mV
mPS

Nconfs w0

64× 323 2.2 0.120(2) 0.29(2) 2.46(8) 3255 4.50(3)

To speed up the simulations, we tuned two levels of Hasenbusch splitting

used 4 SEMWall hits per conf for the connected term and 56 (28 for each
trace) volume hits per conf for the disconnected term.

mPSL = 3.84, smearing radius = 0.39L
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Topological Charge

The topological charge is fluctuating and not frozen, although the autocorrelation
time looks quite long
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Results

Want to understand whether the
error in the effective mass is
limited by the gauge or the
stochastic noise.

Fit the simple model
Error(hits) = A+ B√

hits

A = 0 ⇒ Could probably do
with more hits!
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Results

The effective mass of the σ tends to the mass of two pions as expected.

Can’t distinguish the σ from the 2 pion state, and we know that the ensemble
isn’t chiral enough.
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Conclusion

In the first instance we reached the chirality of the previous setup.

Now that we have the setup, we can go more chiral than previously into the
unexplored region where we expect the σ to decay.

Can go to larger lattices, GPUs, β = 2.15.

Stay tuned! Thanks for listening!
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Backup: Connected term: EO SEMWall sources

Introduce a set of N fields Ξτσk
αc (x) = δx mod 2δtτδασξ

k
c (x⃗), k = 1 . . . N such that for

any x⃗, y⃗, c, d [
ξk∗c (x⃗)ξkd(y⃗)

]
= δcdδx⃗y⃗

where

[·] := lim
N→∞

1

N

∑
k

.

Let φτσk
αc (x) := Sαβcd(x, y)Ξ

τσk
βd (y)

(γ5)ρσ(γ5)αβ[φ
∗τσk
αc (x)φτρk

βc (x)] =
1

2

∑
y⃗

Tr[S((τ, y⃗), x)S(x, (τ, y⃗))]

where the γ5 appears because we use γ5-hermiticity.
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Backup: Subtracting the VEV

Γσ(t, 0)disc = 2

 1

N

N∑
k=1

∑
x⃗,α,c

ξ∗kαc(t, x⃗)ϕ
k
αc(t, x⃗)

 1

N

2N∑
l=N+1

∑
y⃗,β,d

ξ∗lβd(0, y⃗)ϕ
l
βd(0, y⃗)


Define

Γσ(∆t)disc =
1

T

∑
t1−t2=∆t

Γσ(t1, t2)

and

Γσ(t)disc = Γσ(∆t)disc −

〈
1

2NT

2N∑
k=1

T−1∑
t=1

∑
x⃗,α,c

ξ∗kαc(t, x⃗)ϕ
k
αc(t, x⃗)

〉2

.

Then combine it with the connected part (and check the normalisation).
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