

Symmetric Mass Generation in gauge-fermion systems

Anna Hasenfratz University of Colorado Boulder

Lattice 2024, Liverpool Aug 2 2024

SMG is a new paradigm / phase though we have seen it in lattice simulations: e.g. -AH, Neuhaus,*Phys.Lett.B* 220 (1989) 435-440, Lee et al,…. -Cheng,AH,Schaich,*Phys.Rev.D* 85 (2012) 094509

Is SMG only a lattice artifact ? Not always.

Mass Generation

Spontaneous symmetry breaking:

- ‣ chiral symmetry breaks \longrightarrow massless Goldstone bosons
- ‣ bilinear condensate ⟨*ψ*¯ *ψ*⟩ ≠ 0
- ‣ non-Goldstone states are gapped
- ‣ 't Hooft anomaly matching OK

SMG in the continuum is possible if

- \cdot all 't Hooft anomalies (continuous and discrete) cancel \longrightarrow 8 Dirac fermions ‣ some 4-fermion interaction triggers a 4-fermion condensate
-

Two candidates :

 \cdot SU(3) gauge + $N_f = 8$ massless Dirac fermions

 \cdot SU(2) gauge + $N_f = 4$ massless Dirac fermions

(Strong gauge-fermion interactions can lead to 4-fermion condensate)

-
-
-

Symmetric Mass Generation

SMG in the continuum is possible if

-
- ‣ some 4-fermion interaction triggers a 4-fermion condensate

Two candidates :

 \cdot SU(3) gauge + $N_f = 8$ massless Dirac fermions

 \cdot SU(2) gauge + $N_f = 4$ massless Dirac fermions

(Strong gauge-fermion interactions can lead to 4-fermion condensate)

\cdot all 't Hooft anomalies (continuous and discrete) cancel \longrightarrow 8 Dirac fermions

Symmetric Mass Generation

-
- A.H. *PRD* 106 (2022) 1, 014513 - LSD collaboration - O. Witzel's talk
- -

SMG in the continuum is possible if

-
- ‣ some 4-fermion interaction triggers a 4-fermion condensate

Two candidates :

 \cdot SU(3) gauge + $N_f = 8$ massless Dirac fermions

 \cdot SU(2) gauge + $N_f = 4$ massless Dirac fermions

(Strong gauge-fermion interactions can lead to 4-fermion condensate)

\cdot all 't Hooft anomalies (continuous and discrete) cancel \longrightarrow 8 Dirac fermions

Symmetric Mass Generation

- A.H. *PRD* 106 (2022) 1, 014513
	- LSD collaboration O. Witzel's talk
- N. Butt, S. Catterall, A.H.
-
- $SU(3)$ gauge + $N_f = 8$
- $SU(2)$ gauge + $N_f = 4$ look very similar:

Summary/Conclusion

In numerical simulations (with staggered fermions)

- weak coupling phase that appears conformal ‣ chirally symmetric
	- ‣ show conformal hyperscaling
- strong coupling phase that is SMG with
	- ‣ chirally symmetric
	- ‣ gapped spectrum
- the phase transition is continuous
	- \rightarrow 3 continuum limit and RG β function

 $β_b = N_c/g²$

- $SU(3)$ gauge + $N_f = 8$
- $SU(2)$ gauge + $N_f = 4$ look very similar:

Summary/Conclusion

In numerical simulations (with staggered fermions)

- weak coupling phase that appears conformal ‣ chirally symmetric
	- ‣ show conformal hyperscaling
- strong coupling phase that is SMG with
	- ‣ chirally symmetric
	- ‣ gapped spectrum
- the phase transition is continuous
	- \rightarrow 3 continuum limit and RG β function

 $β_b = N_c/g²$

- $SU(3)$ gauge + $N_f = 8$
- $SU(2)$ gauge + $N_f = 4$ look very similar:

- weak coupling phase that appears conformal ‣ chirally symmetric
	- ‣ show conformal hyperscaling
- strong coupling phase that is SMG with
	- ‣ chirally symmetric
	- ‣ gapped spectrum
- the phase transition is continuous
	- \rightarrow 3 continuum limit and RG β function

 $β_b = N_c/g²$ SMG-looking conformal-looking

Summary/Conclusion

In numerical simulations (with staggered fermions)

- $SU(3)$ gauge + $N_f = 8$
- $SU(2)$ gauge + $N_f = 4$ look very similar:

In numerical simulations (with staggered fermions)

- weak coupling phase that appears conformal ‣ chirally symmetric
	- ‣ show conformal hyperscaling
- strong coupling phase that is SMG with
	- ‣ chirally symmetric
	- ‣ gapped spectrum
- the phase transition is continuous
	- \rightarrow 3 continuum limit and RG β function
- (could be 'walking': fixed point merger leads to the opening of the conformal window)

 $\beta_b = N_c/g^2$ SMG-looking conformal-looking

Summary/Conclusion

Numerical simulations for both actions are

- nHYP smeared massless staggered fermions
- PV improved gauge action: 8 PV bosons per fermion, $am_{PV} = 0.75$
- HMC update: QEX code
	- https://github.com/jcosborn/qex
	- https://github.com/ctpeterson/qex_staghmc
- Measurements: hadron spectrum, gradient flow, Dirac eigenmodes:
	- QLUA
	- QEX
	- MILC-variant : https://github.com/daschaich/KS_nHYP_FA

Simulation details

"gapped" phase

1/L volume scaling conformal phase

Hadron spectrum - $SU(2) + N_f = 4$

Mass of would-be Goldstone pion

Hadron spectrum

volume independent "gapped" phase

1/L volume scaling conformal phase

Mass of would-be Goldstone pion

Hadron spectrum - $SU(2) + N_f = 4$

Weak coupling shows $M_{PS}L \approx$ const conformal scaling

1/L volume scaling conformal phase

Hadron spectrum - $SU(2) + N_f = 4$

Weak coupling shows $M_{PS}L \approx$ const conformal scaling

1/L volume scaling conformal phase

The vector shows the same 1/L conformal scaling

This is not epsilon regime

Hadron spectrum

Weak coupling shows $M_{PS}L \approx$ const conformal scaling

1/L volume scaling conformal phase

Chiral symmetry- $SU(2) + N_f = 4$

Parity partner correlators are identical in both phases

SMG phase weak coupling phase

Finite size scaling/curve collapse analysis:

Scaling near the critical point $g \rightarrow g^*$

: dimensionless operator

 $\mathcal{O}(g, L) = f(L/\xi)$

- ξ: correlation length at g $-f(x = L/\xi)$ unique curve, independent of L

- 2nd order scaling: $\xi \propto |g - g_*|^{-\nu}$, - 1st order scaling: like 2nd order but *ν* = 1/*d* = 0.25 −*ν*

- BKT or walking scaling: if $\beta(g^2) \sim (g^2 - g_*^2)^2 \rightarrow \xi \propto e^{\zeta/\vert g - g_*\vert}$

Find the exponents and g_* by standard curve-collapse analysis;

Order of the phase transition / FSS :

A.H. *Phys.Rev.D* 106 (2022) 1, 014513

-
- Spectral mass: *L MPS*

Order of the phase transition / FSS :

Observable \emptyset :

A.H. *Phys.Rev.D* 106 (2022) 1, 014513

- Finite volume gradient flow (GF) coupling: $g_{GF}^2(g, L; t) = \mathcal{N}t^2 \langle E(t) \rangle_{g, L}$, $t/L^2 = c/8$

FSS/ Order of the phase transition - $SU(2) + N_f = 4$

- Both 2nd order and BKT fits show good curve collapse $\nu \approx 0.5$ is not consistent with first order transition - FSS does not (yet) distinguish 2nd order and BKT

Summary/Conclusion

Symmetric Mass Generation:

-
- is a new paradigm we do not yet know all its applications • lattice simulations often show SMG phase, but with first order transitions

- $SU(3)$ gauge + $N_f = 8$
- $SU(2)$ gauge + $N_f = 4$

Systems that are anomaly-free can have continuum limit / continuous phase transition

Lattice simulations are ongoing; suggest both systems

- exhibit conformal and SMG phases
- continuous phase transition

More details about SU(3) gauge $+ N_f = 8$ in next talk by O. Witzel

EXTRA SLIDES

$SU(3) + N_f = 8 \beta$ function

Cutoff effects due to topology limit the range where $\beta(g^2)$ can be reliably evaluated

FSS/ Order of the phase transition - $SU(2) + N_f = 4$

Use GF coupling $g^2(c = 0.5)$ Both 2nd order and BKT fits show excellent curve collapse $\nu \approx 0.5$ is not consistent with first order transition

