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Why Study Thermalization and Quantum Many-Body Scars?

• Addressing initial value problems in Quantum Field Theory;

• Complicated from first principles due to severe sign problems;

• Quantum many-body scars challenge foundational aspects of thermalization;

• Well-suited for quantum simulators.

E.g. Heavy Ion Collision (J. Berges, M. P. Heller, A. Mazeliauskas, R. Venugopalan. Rev. Mod. Phys (2021))
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Outline

1. Hamiltonian (formulation) for U (1) Pure Gauge Theories

2. Thermalization and Scars in Many-Body Systems

3. Constructing and Isolating Quantum Scars
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Hamiltonian for U (1) Pure Gauge Theories

H = −t
∑

n
U†

n1U
†
n+1̂2Un2Un+2̂1︸ ︷︷ ︸

U□

+h.c.+ κ
∑

n
E2

n

En ∈ Z

Un unitary raising
operator

Ui |Ei⟩ = |Ei + 1⟩

Gauss’ Law
Ei −Ek +Ej −El = 0
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Truncation: En ∈ {−S, . . . , S}

Finite Hilbert space per link

H = −t
∑

n
U†

n1U
†
n+1̂2Un2Un+2̂1︸ ︷︷ ︸

U□

+h.c.+ κ
∑

n
E2

n

Un non-unitary
raising operator

Ui |Ei⟩ = |Ei + 1⟩
Un |S⟩ = 0

Gauss’ Law
Ei −Ek +Ej −El = 0

• S = 1/2 and S = 1 are equivalent
to spins (Quantum Link Models);
S. Chandrasekharan, U.-J. Wiese NPB (1997)

• S large enough ⇔ S = ∞
(at least in 1 + 1D: see T. Budde,
Tuesday, 4:15 PM, Quantum
Computing track)

• Here: arbitrary integer S.
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What Happens to an Isolated Quantum System When Left Alone?

Prepare Quantum State

Go away

Measure Come back
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How Do Quantum Systems Thermalize?
Thermalization: observable converge to values

independent of the initial details.

Scar: special initial conditions avoid thermalization.
(For a review: S. Moudgalya, B. A. Bernevig, N. Regnault. RPP (2022))

• Involves real-time evolution;
• Generically afflicted by severe sign problems;
• Well suited for quantum simulators.

H. Bernien et al. Nature (2017)
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Eigenstate Thermalization Hypothesis (ETH)

Non-integrable models are expected to thermalize

1. Mid-spectrum states are highly entangled.

2. Thermalization applies to local observables

lim
t→∞

⟨ψ(t)|O |ψ(t)⟩︸ ︷︷ ︸
Long time expectation value

= O (⟨ψ(0)|H |ψ(0)⟩) = 1
tr (e−βH) tr

(
Oe−βH

)
︸ ︷︷ ︸

Canonical Ensemble
Temperature fixed by the energy

For a review: L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol. Adv. Phys. (2016)

Our model

• Spectrum is symmetric (eigenstates come in pairs |E⟩ and |−E⟩;

• States with E = 0 are mid-spectrum;
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Quantum Many-Body Scars and Gauge Theories

• First found experimentally in the PXP model (Rydberg atoms);
H. Bernien et al. Nature (2017)

• PXP maps exactly to a U(1) gauge theory in 1+1D;
F. Surace et al. PRX (2020)

• Scars predicted in a variety of 1+1D gauge theories;
H.-Y. Wang et al. PRL (2022) J.Y. Desaules et al. PRX (2023) J. C. Halimeh et al. Quantum (2023) G. Calajo arXiv:2405.13112 ...

• Also in 2+1D for spin-1/2;
D. Banerjee et al. PRL (2022) S. Biswas et al. SciPost. Phys. (2022) I. Sau et al. PRD (2024)

HERE
New mechanism for the formation of scars in 2+1D for arbitrary spin

T. Budde, M. Marinkovic, JPB - arXiv:2403.08892
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Spin-1 QLM: Two Plaquettes Zero Mode

We construct two-plaquette states:

∑
n

(
U□ + U†

□

)
|Blue⟩ =

∑
n

(
U□ + U†

□

)
|Red⟩ = 0

Tiling the blocks

Still zero energy

We can use this to construct many
"special" zero-energy states

o o o
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The Periodic Ladder

H =
∑

n

(
U□ + U†

□

)
+ λ

∑
l top row

Sz
l

Bipartite Entanglement Entropy λ = 0.2
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Scars for Arbitrary Volumes and Spins

|ψ(i,T )
s ⟩ = 1

(S + 1)|T |/2

∏
(n,n′)∈T

(
S∑

k=0

(−1)k(U□n)i−S+k(U□n′ )i−k

)
|0⟩

|0⟩ ≡ State where all links are zero

Entanglement entropy for
S = 1 and 6 × 2 volume

Entanglement entropy for a
S = 2 ladder

For details and other types of scars see T. Budde, M. Marinkovic, JPB - arXiv:2403.08892
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Non-Integrability of the Ladder

Address integrability:
• Resolve symmetries;
• Compute level spacing distribution.

p (r) , rn = min
{
En+1 − En

En − En−1
,
En − En−1

En+1 − En

}
− Parity Symmetry Sector + Parity Symmetry Sector

Integrable systems: expected Poisson
Non-integrable: expected Gaussian Orthogonal Ensemble (GOE)
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Outlook

Quantum Many-Boyd Scars are widespread in 2+1D pure gauge theories.

• Zero energy states can combine to form Quantum Many-Body Scars for any spin;

• Single leg ladder scars facilitate experimental realization (not present for spin 1/2).

• Can the mechanism be generalized for other models (e.g 3D)?

• What is the role of scars in the continuum limit?

Thank You!
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