

Lattice 2024, University of Liverpool

Euclidean Monte Carlo informed ground state preparation for quantum simulation

Zohreh Davoudi, **Navya Gupta**, Christopher D. White

University of Maryland, College Park

(Manuscript in preparation)

1

Lattice QCD gives us static correlation functions.

 $\langle O \rangle =$ 1 $\frac{1}{Z}$ \int $\mathscr{D}\phi$ $e^{-S[\phi]}$ O

Hamiltonian methods can compute dynamical correlation functions.

$$
|\psi\rangle_{\text{in}} \rightarrow e^{-i\hat{H}t} \rightarrow \text{Measure}
$$

$$
|\psi\rangle_{\text{in}} \rightarrow e^{-i\hat{H}t} \rightarrow \text{Measure} \qquad \langle O(t) \rangle = \langle \psi | e^{i\hat{H}t} \hat{O} e^{-i\hat{H}t} | \psi \rangle
$$

Hamiltonian methods can compute dynamical correlation functions.

$$
\langle O(t) \rangle = \langle \psi | e^{i \hat{H} t} \hat{O} e^{-i \hat{H} t} | \psi \rangle
$$

Can we bridge lattice QCD and quantum simulation?

Quantum simulator computes dynamical correlators.

 $\langle O(t) \rangle = \langle \psi | e^{i\hat{H}t} \hat{O} e^{-i\hat{H}t} | \psi \rangle$

Can we bridge lattice QCD and quantum simulation?

dynamical correlators.

 $\langle O(t) \rangle = \langle \psi | e^{i\hat{H}t} \hat{O} e^{-i\hat{H}t} | \psi \rangle$

 $|\psi\rangle$ _{in} → $e^{-i\hat{H}t}$ → Measure

 $|\psi\rangle$ _{in} → $e^{-i\hat{H}t}$ → Measure

Can we bridge lattice QCD and quantum simulation?

dynamical correlators.

 $\langle O(t) \rangle = \langle \psi | e^{i\hat{H}t} \hat{O} e^{-i\hat{H}t} | \psi \rangle$

Trapped ion quantum computer from **12** Trapped ion quantum com
Monroe Lab (UMD, 2016)

Trapped ion quantum computer from **13** Trapped ion quantum com
Monroe Lab (UMD, 2016)

Trapped ion quantum computer from **14** Trapped ion quantum com
Monroe Lab (UMD, 2016)

Ground state of $(1 + 1)D \phi^4$ **theory**

$$
\hat{H} = \sum_{n=0}^{N-1} \left(\frac{\hat{\pi}_n^2}{2} + \frac{(\hat{\phi}_{n+1} - \hat{\phi}_n)^2}{2} + \frac{1}{2} m^2 \hat{\phi}_n^2 + \frac{\lambda}{4} \hat{\phi}_n^4 \right)
$$

Ground state of $(1 + 1)D \phi^4$ theory: Monte Carlo results

Trapped ion quantum computer from **17** Trapped ion quantum com
Monroe Lab (UMD, 2016)

Quantum states of *N* **bosons**

Most states of *N* bosons admit the decomposition

$$
|\psi\rangle = \hat{U}_G \sum_{\vec{n} = n_1, ..., n_N} c_{\vec{n}} \hat{a}_1^{\dagger n_1} ... \hat{a}_N^{\dagger n_N} | \vec{0} \rangle
$$

$$
n_1 + ... + n_N \le R \le m \le R \le \text{for } R \in \mathbb{N} \cup \{0\} \text{ is the}
$$
stellar rank of this state.

The bosonic states which do not admit the above decomposition are said to have an infinite rank.

Finite rank states can get arbitrarily close to infinite-rank states (in trace distance).

Chabaud, U., Markham, D., & Grosshans, F. (2020). Stellar representation of non-Gaussian quantum states. *Physical Review Letters*, *124*(6), 063605.

Simpler choices of finite rank states

Energy minimization results in comparable ansatz energies…

22

…but exhibit distinct levels of non-local correlations and non-gaussianity.

It is desirable to go beyond the singledimensional metric of energy.

It is desirable to go beyond the singledimensional metric of energy.

Trapped ion quantum computer from **26** Trapped ion quantum com
Monroe Lab (UMD, 2016)

PIMC informed moment optimization

PIMC informed moment optimization

 $(m^2, \lambda) = (0.6, 1.5), (R, Q) = (2, 2)$

PIMC informed moment optimization

 \boldsymbol{w}

Trapped ion quantum computer from **30** Trapped ion quantum com
Monroe Lab (UMD, 2016)

Circuit blueprint $|\psi\rangle_{(R,Q)} = \hat{U}_G$ $\sum d_{\vec{n}} \hat{a}_i^{\dagger n_0} \dots \hat{a}_{i+q}^{\dagger n_q} |0\rangle_R$ $\vec{n} = n_1, ..., n_q$ $n_1 + \ldots + n_q \leq R$ *q* ≤ *N*/2 … *^H* ⊗ ⊗ *^H* Ancilla … ↟ *S*̂ (*r*) $|\phi_0\rangle$ _{digitized} upto Q *U* … registers *S*̂ (*r*) $|\phi_1\rangle$ _{digitized} $|\psi\rangle_{R,Q}$ $\ddot{\cdot}$ $\ddot{\bullet}$ *S*̂ (*r*) $|\phi_{N-2}\rangle$ digitized ⋯ *U* … *S*̂ (*r*) $|\phi_{N-1}\rangle_{\text{digital}}$ $\binom{R+Q-2}{Q}$ $\binom{R+Q-2}{Q}$ controlled unitaries $P_{R,Q}$ | 0 \rangle *^Q*) controlled unitaries 31

Trapped ion quantum computer from **32** Trapped ion quantum com
Monroe Lab (UMD, 2016)

Outlook

- O Systematic study of the moment optimization landscape.
- Development of continuous variable state preparation strategies.
- Application of moment optimization to gauge theories.
- Utility of moment optimization in simulations of dynamics.
- O Implementation on actual quantum hardware.

Supplementary slides

Input

Quantum circuit ansatz

• Wavefunction ansatz:

• Spectral gap and

ground state moments (determined by PIMC)

 $|\psi(\overrightarrow{\Lambda})\rangle$

Variational Quantum Eigensolver

Monte Carlo optimization

Direct circuit encoding

Ground state wavefunction.

Computation

Minimizing the energy of the state represented by the circuit using hybrid classical and quantum computing.

Optimized state misses certain ground state moments.

Optimize $|\psi(\vec{\Lambda})\rangle$ to accurately represent a set of target ground state moments.

Determine circuit encoding of moment optimized ansatz.

Determining the quantum circuit which encodes this known wavefunction.

Wavefunction known only for a limited set of cases.

GROUND **STATE KNOWLEDGE** NEEDED

Minimal

Maximal