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Hamiltonian
Truncation

@ We compute the probability that the Schwinger Model QFT remains
in its ground state following a quantum quench.

® We use Hamiltonian Truncation to generate an approximate
Hamiltonian for our system of low dimensionality.

©® We use a qubit based, gate based, quantum device from IBM to
determine how this probability evolves with time.
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Hamiltonian Truncation
0

Method Overview

Hamiltonian Setup

H=Hy+V (1)

® Hy is an exactly solvable Hamiltonian
® V represents a new interaction, which may be strong.

® Work in the eigenbasis of Hy. Truncate so that only a finite number
of states with Eg < Et are included in the basis.

e Diagonalize numerically to calculate spectrum and wavefunctions.

® Has been applied to a variety of QFTs including 2d QCD. See [Konik
et al '17], [Katz, Fitzpatrick '22] for overviews.
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Hamiltonian Truncation
oe

A Simple Example: The Anharmonic Oscillator

Take the quantum mechanical model
B p? + X2
2

Decompose the Hamiltonian so that Hp is the SHO and V = Ax*. Work in
the SHO eigenbasis: Hy |n) = (n+1/2)|n)

H + At (2)

QM massive anharmonic oscillator

H Zz . . ® Truncate basis to include states
-? 20 T Tt Atoa e |I7> for n+ 1/2 < ET.
'E‘If B e % e All energy eigenvalues are upper
8 eaen e eae e bounds for the true energies due
g : to min-max theorem.
; -510*20‘3'0+40.‘50 ® Method generalises to QFTs.

Er
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Schwinger Model
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Schwinger Model

QED in 1+1 dimensions

L= —3FuF + 5 (10— gh—m)y, ©)

® Shares qualitative features with QCD including confinement, chiral
symmetry breaking, U(1)a anomaly.

® \We take there to be only 1 Dirac fermion.

® Put on a circle of circumference L and use periodic boundary
conditions.

e Studied extensively using lattice gauge theory on a variety of quantum
computing platforms e.g. [P. Hauke et al '13].
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Schwinger Model
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Bosonisation

The m = 0 theory was solved exactly by Schwinger. It is a theory of
confined, noninteracting, pseudoscalar mesons.

1t 2 2 g2 2
HOZ/ de T2+ (B0 + E g2 (4)
2 0 ™

The scalar has mass M = g//7. Bosonisation helpfully removes gauge
redundant d.o.fs. Normal ordering in (4) removes UV divergences.
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Schwinger Model
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Bosonisation

The m = 0 theory was solved exactly by Schwinger. It is a theory of
confined, noninteracting, pseudoscalar mesons.

1 L g2
Ho= [ dc im0+ 7 (4)
2 0 ™
The scalar has mass M = g//7. Bosonisation helpfully removes gauge
redundant d.o.fs. Normal ordering in (4) removes UV divergences.

When m # 0, the theory becomes interacting

V= —2cmM/de - cos (m¢+9> 3 (5)
0

chiral symmetry is broken, and the 6 parameter becomes physical, but we
only consider 8 = 0 here.
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Schwinger Model
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Basis States

Quantise the massive scalar field on the circle

600 = Y o (el o) ()

where the n represent the different momentum modes on the circle
kn = 2mn/L.
Work in eigenbasis of Hy

n=oo 1

=TI ()"0 (7)

n=—00

which is the usual Fock basis.
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Schwinger Model
[e]e]e] Jo]

Truncation

List the states in order of increasing Hy eigenvalue and take the first 27
states from this list.

For instance, with n; = 2 and gL = 8, the states we would retain are

. 5 (b) 0 aaio. (). @

These states form our computational basis for quantum computing.
Calculate matrix elements

Ve = ({r'}] : cos (V) : [{r}) (9)

between these states. Gives H as a 2"7 x 2™ matrix
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Schwinger Model
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Sanity Check

Numerical estimates for particle masses converge to known results as
(qubit number ng) is increased

3.0
PT
2.5 e =5 “
ng =10 o
2.0
+ MPS >
> o
fj 1.5 *
1.0 *
0.5
0.0

0.0 0.2 0.4 0.6 0.8 1.0
sl

HT data taken at gL = 8. PT = second order perturbation theory in
infinite volume. MPS = matrix product states M. Bafiuls et al '13.
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Time Evolution
000000

Quantum Quench

We consider the time dependence of the probability that the Schwinger
model stays in its m = 0 vacuum state, following a quantum quench to
m/g =0.2.

G(t) = <0 ‘e‘th‘ 0> . P(t)=G(e)2. (10)

This particular probability cannot be computed without state preparation
in Kogut-Susskind lattice formulation of the Schwinger model.

These routines can be extremely costly. The resources required to
implement the state-preparation for an arbitrary state can scale
exponentially [Sun et al '23].
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Time Evolution
0@0000

Time Evolution Converges

1.000
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® The vacuum survival probability converges as ng — oo.

® Already at ny = 2, we get a reasonable approximation to the
continuum time evolution. We are within 5% of the ng = 10 result.

® This is a classical calculation.
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Time Evolution
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Pauli Decomposition

To do the calculation on a NISQ device, we decompose the Hamiltonian as

3
H= > i, (Ui1®'~®a,-nq) (11)
i1.-ing =0

Any Hermitian matrix can be decomposed this way to yield real
coefficients Qi g

For a generic dense Hamiltonian matrix, there will be ~ 4" nonzero
coefficients in this decomposition.
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Time Evolution
[e]e]e] lele)

Trotterisation

We use the Trotter-Suzuki approximation to first order. Error ~ O(t?/n).

n

15-5Ing

The exponential of each Pauli term can be implemented on a qubit-based

quantum device through a short sequence of single-qubit rotation gates
and CNOT gates.
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Time Evolution
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Trotter Error

1.000 — Exp,ng=2
Exp, n, =6
. e .y =6
0.975 N s R ot =01
” SR R 5t=03
. —= =05
0.950 N\ p -
4
0.925
= \ /
£ 0000 /
\ i
0.875
\
"
0.850 h
0.825
0 1 2 3 1
gt

Figure: Blue curves are for ny = 2 and yellow for n, = 6.

We will use gt/n = gdt = 0.3 for ng = 2 on the quantum device.
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Time Evolution
[e]e]e]e]e] )

Quantum Hamiltonian Truncation
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Figure: Time evolution of the Schwinger model via HT run on the ibm brisbane
127-qubit quantum computer (though we only use 2 of them). The results are
enhanced using error mitigation and suppression routines through QISKIT and
Q-CTRL.
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Summary and Conclusion

@ We demonstrate the viability of using HT to facilitate the
non-perturbative, real-time simulation of QFTs on NISQ devices.
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Summary
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Summary and Conclusion

@ We demonstrate the viability of using HT to facilitate the
non-perturbative, real-time simulation of QFTs on NISQ devices.

® We compute the time dependence of the vacuum survival probability
in the Schwinger model on a real quantum computer.
G(t)|? in the Sch del I t t

©® HT was able to give fairly accurate results with a very small
Hamiltonian.

® Our approach did not require initial state prep, because HT gave us
the freedom to pick a 'good’ computational basis.

® The tools we used could be applied to many other QFTs and
observables - there are many other exciting applications to explore!
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Backup
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What QFTs Have Been Studied Using HT?

An incomplete selection of studies, with an hep-th focus: Please see [Konik
et al '17], [Katz, Fitzpatrick '22] for a more complete review.

In 2 dimensions
® Minimal model CFT deformed with relevant primary operator
[Yurov, Zamolodchikov '89]...

® SU(3) gauge theory with fundamental Dirac fermions on the
lightcone [Hornbostel, Brodsky, Pauli '90]...

e ¢* deformation of massive scalar field [Rychkov, Vitale '14]...
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What QFTs Have Been Studied Using HT?

An incomplete selection of studies, with an hep-th focus: Please see [Konik
et al '17], [Katz, Fitzpatrick '22] for a more complete review.

In 3 dimensions

o ¢? + i¢p3 deformation of free scalar CFT on S3 [Hogervorst '18]...
e ¢* deformation of massive scalar on R x T?2 [Elias-Miré, Hardy '18]...

o ¢4 deformation of scalar CFT on the lightcone [Anand, Katz,
Khandker, Walters '18]...
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