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-
Motivation: Complex Action Problem (in very short)

Partition function as a path integral

Z = /qu e Sl :/D¢ w(¢]

If weights w[¢] ¢ Rt usual MCMC methods relying on importance sampling
not applicable:

complex action problem

In principle, can be bypassed with the help of quantum computers

[quant-ph/1811.03629]
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Digitizing gauge groups

In the NISQ era the main bottlenecks are the limited
» circuit depths
» number of qubits

The Hilbert space for a gauge e.g. U(1) discretized to Z(N)
theory based on a continuous ‘
gauge group is infinite Jo(p ER) =€ — gy(neZ)=
dimensional

4

Shall be made discrete and £
finite via digitization
scheme

eszn/N

[hep-1at/1906.11213],
[hep-lat/2201.09625] 2/11



The Hamiltonian limit

To derive the Kogut-Susskind Hamiltonian [Phys.Rev.D 11.395]:
1. temporal gauge ~ zero-temperature limit

2. anisotropic lattice with action
g8 — Z {7 Bs ZReTrZ/lkl(a:) — Br ZReTr [Uk(z + O)U,I(m)]
© k<l k

3. taking the Hamiltonian limit as

as = fixed ~ discrete space
ar — 0 ~ continuous time

along trajectory set by Hamiltonian coupling gu
4. Kogut-Susskind Hamiltonian

g 21 gH Z Bt e ZReTru

{7}

where /;; is a differential operator in group parameters acting on the link
connecting sites ¢ and i + J; e.g in U(1) £;; o< —id/d6;; acting on %

3/11



Scaling laws of gauge couplings in the Hamiltonian limit
In the Hamiltonian limit 8¢ — 0 and Sy — oo ... How ezactly?

Hamiltonian from transfer matrix
Z=TrT" from which T =1—aH + O(a?)

To have non-trivial Hamiltonian in the continuous time limit, scaling laws
are imposed

» Temporal coupling: continuous vs. discrete gauge groups

1
CLt?_[oo,kin X Ac>o - ﬁT ~ —

a
aH N kin < Ay = pr ~ log(1/at)

with A, a continuous and Ay a discrete Laplacian in group space
> Spatial coupling: 8s ~ a; (regardless)
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The Hamiltonians

U(1) Hamiltonian (8s — 0 s.t. 87 = 4/Bsgs):

~ gq N 2
w2 =g 2 8Pk ) Ry
j=1,2,3 P

with Py being a permutation matrix:

0 0 O 0 1
1 00 0 0
P,=(0 1 0 0 0
0 01 0 0
0 0 0 10

(it can be checked that log? Py is a discrete Laplacian up to a constant)
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Anisotropic Euclidean simulations with discrete groups

Nuances of working with discrete groups:
» freezing transition occurs due to the discrete nature of the group
» which is of first order. .. hysteresis
> parallel tempering in 3g/7

» mixture of initial configurations

Nuances of taking the Hamiltonian limit:
» as Bg — 0 and fr — oo: overflow in p; = €% /Z and Z =), e™

» work with logarithms: “log-sum-exp trick”

log Z = log (ei’ Z exi*i’) =z + log (Z e“*i) with Z = max{z;}

7 %
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-
Phase transitions in U(1) and Z(V) lattice gauge theories

Anisotropic scan in (8g, fr):

Average plaquettes: Plaquette susceptibilities:
Z(N=T7),|A|=N? x N, =4% x 32 Z(N=T7),|A| = N3 x N; =43 x 32
0.006
0.005
<Z/IH> #0 : . © 0.004
partial freezing - & r
0.003 “
deconfinement =
[in U(D] freezing o 0.002
[not in U(1)]
0.001
(Ur) #0
partial freezing 0.000
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Phase transitions in U(1) and Z(V) lattice gauge theories

Z(N=3),|A|=N? x N, =43 x 32

0.6 21 For N <5 freezing washes
freezing
fonly] e away deconfinement

(ur)#0 N R

partial freezing

0.0
T
07 B, 3 Nooo - N=7
06] %
~05 N b N=3 - N=9
204l N=
Freezing goes away as N — oo o3 .
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Hamiltonian limit from Euclidean simulations

Do the Hamiltonian limit and the N — oo

1. Nt — 00
limit commute? ’

2. Bs — 0 and Br — o0

. .. ith i ling 1
For fixed Ny 2(+1) numerical limits (with appropriate scaling law)
are to be computed for U(1) or Z(N): 3. N — oo for Z(N).
Hamiltonian limits of U(1) and Z(N') theories
=2 NI ="
1.0
R S . u
0.8 ® ¢ Z(N)
0.6 . :
= non-commuting
S04 L limies? || |
* ®
0.2
[INA
0.0
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Summary and Outlook

> Freezing transition due to discrete nature of the group Z(N) absent
in U(1)

» Studying the freezing transition with anisotropic lattices for the
first time

» Scans in the (Sg, 8r) coupling space reveals rich phase diagram for
Z(N) gauge theories

» Deconfinement transition also in Z(>5) and U(1) theories,
otherwise flushed away by freezing

> Partial freezing transitions if Sg small (large) and Sr large (small)

» Remaining question: what happens with freezing transition in the
Hamiltonian limit as N — oo, i.e., the discretization is taken to be finer?
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Summary and Outlook

Future prospects: extending analysis to SU(2) and SU(3)

» Largest non-abelian subgroup of SU(3) is S(1080)
(studied in detail in [hep-lat/1906.11213] with isotropic lattices)

N, x N2 =40 x 23
Spatial | Temporal o
. 038
6% 06~
S S
. 04>~
. , 02
00

123456789' 12345678‘)

also shows partial freezing
> SU(3) = S(1080) & U(1l) 2 Z(3) ~ need something finer!
» for SU(2) finer digitizations (not based on subgroups) were introduced:
T. Hartung et.al. hep-lat/2201.09625: Digitising SU(2) gauge fields
and the freezing transition
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The End

Thank you!
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