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Motivation: Complex Action Problem (in very short)

Partition function as a path integral

Z =

∫
Dϕ e−S[ϕ] =

∫
Dϕ w[ϕ]

If weights w[ϕ] /∈ R+ usual MCMC methods relying on importance sampling
not applicable:

complex action problem

In principle, can be bypassed with the help of quantum computers

[quant-ph/1811.03629]
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Digitizing gauge groups
In the NISQ era the main bottlenecks are the limited
▶ circuit depths
▶ number of qubits

The Hilbert space for a gauge
theory based on a continuous

gauge group is infinite
dimensional

⇓
Shall be made discrete and

finite via digitization
scheme

[hep-lat/1906.11213],
[hep-lat/2201.09625]

e.g. U(1) discretized to Z(N)

g∞(φ ∈ R) = eiφ 7→ gN (n ∈ Z+) = e2πin/N
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The Hamiltonian limit
To derive the Kogut-Susskind Hamiltonian [Phys.Rev.D 11.395]:

1. temporal gauge ∼ zero-temperature limit
2. anisotropic lattice with action

Sa =
∑
x

[
− βS

∑
k<l

ReTrUkl(x)− βT

∑
k

ReTr
[
Uk(x+ 0̂)U†

k(x)
]]

3. taking the Hamiltonian limit as{
as = fixed ∼ discrete space
at → 0 ∼ continuous time

along trajectory set by Hamiltonian coupling gH

4. Kogut-Susskind Hamiltonian

HKS
∼=

g2H
2as

∑
{ij}

ℓ2ij +
2

g2Has

∑
p

ReTrUp

where ℓij is a differential operator in group parameters acting on the link
connecting sites i and i+ ĵ; e.g in U(1) ℓij ∝ −id/dθij acting on eiθij
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Scaling laws of gauge couplings in the Hamiltonian limit

In the Hamiltonian limit βS → 0 and βT → ∞ . . . How exactly?

Hamiltonian from transfer matrix

Z = TrTNt from which T = 1 − atH+O(a2t )

To have non-trivial Hamiltonian in the continuous time limit, scaling laws
are imposed

▶ Temporal coupling: continuous vs. discrete gauge groups

atH∞,kin ∝ ∆∞ =⇒ βT ∼ 1

at
atHN,kin ∝ ∆N =⇒ βT ∼ log(1/at)

with ∆∞ a continuous and ∆N a discrete Laplacian in group space
▶ Spatial coupling: βS ∼ at (regardless)
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The Hamiltonians
U(1) Hamiltonian (βS → 0 s.t. βT = 4/βSg

4
H):

asH∞ ∼= −g2H
4

∑
i∈Λs

j=1,2,3

d2

dθ2ij
+

2

g2H

∑
p

ReUp

Z(N) Hamiltonian (βS → 0 s.t. βT = 1/(cos(2π/N)− 1) log(g4HβS/4)):

asHN
∼= −g2H

4

N2

4π2

∑
i∈Λs

j=1,2,3

log2 P1 +
2

g2H

∑
p

ReUp

with P1 being a permutation matrix:

P1 =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 1 0


(it can be checked that log2 P1 is a discrete Laplacian up to a constant)
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Anisotropic Euclidean simulations with discrete groups

Nuances of working with discrete groups:
▶ freezing transition occurs due to the discrete nature of the group
▶ which is of first order. . .hysteresis
▶ parallel tempering in βS/T

▶ mixture of initial configurations

Nuances of taking the Hamiltonian limit:
▶ as βS → 0 and βT → ∞: overflow in pi = exi/Z and Z =

∑
i e

xi

▶ work with logarithms: “log-sum-exp trick”

logZ = log
(
ex̃

∑
i

exi−x̃
)
= x̃+ log

(∑
i

exi−x̃
)

with x̃ = max{xi}
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Phase transitions in U(1) and Z(N) lattice gauge theories

Anisotropic scan in (βS , βT ):

Average plaquettes:
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Phase transitions in U(1) and Z(N) lattice gauge theories
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Freezing goes away as N → ∞
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Hamiltonian limit from Euclidean simulations

Do the Hamiltonian limit and the N → ∞
limit commute?

For fixed Ns 2(+1) numerical limits
are to be computed for U(1) or Z(N):

1. Nt → ∞,
2. βS → 0 and βT → ∞

(with appropriate scaling law)

3. N → ∞ for Z(N).
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Summary and Outlook

▶ Freezing transition due to discrete nature of the group Z(N) absent
in U(1)

▶ Studying the freezing transition with anisotropic lattices for the
first time

▶ Scans in the (βS , βT ) coupling space reveals rich phase diagram for
Z(N) gauge theories

▶ Deconfinement transition also in Z(≳ 5) and U(1) theories,
otherwise flushed away by freezing

▶ Partial freezing transitions if βS small (large) and βT large (small)
▶ Remaining question : what happens with freezing transition in the

Hamiltonian limit as N → ∞, i.e., the discretization is taken to be finer?
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Summary and Outlook
Future prospects: extending analysis to SU(2) and SU(3)
▶ Largest non-abelian subgroup of SU(3) is S(1080)

(studied in detail in [hep-lat/1906.11213] with isotropic lattices)
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also shows partial freezing
▶ SU(3) ∼= S(1080) ⇔ U(1) ∼= Z(3) ∼ need something finer!
▶ for SU(2) finer digitizations (not based on subgroups) were introduced:

T. Hartung et.al. hep-lat/2201.09625: Digitising SU(2) gauge fields
and the freezing transition

11 / 11



The End

Thank you!
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