Gauge field digitization in the Hamiltonian limit

Dávid Pesznyák

in collaboration with Attila Pásztor

Lattice 2024

July 29, 2024, Liverpool, United Kingdom

HUN-REN Wigner Research Centre for Physics

Eötvös Loránd University

Motivation: Complex Action Problem (in very short)

Partition function as a path integral

$$\mathcal{Z} = \int \mathcal{D}\phi \; e^{-S[\phi]} = \int \mathcal{D}\phi \; w[\phi]$$

If weights $w[\phi] \notin \mathbb{R}^+$ usual MCMC methods relying on importance sampling not applicable:

complex action problem

In principle, can be bypassed with the help of quantum computers

[quant-ph/1811.03629]

Digitizing gauge groups

In the NISQ era the main bottlenecks are the limited

- circuit depths
- number of qubits

The Hilbert space for a gauge theory based on a continuous gauge group is infinite dimensional

e.g. U(1) discretized to Z(N)
$$g_{\infty}(\varphi \in \mathbb{R}) = e^{i\varphi} \quad \mapsto \quad g_N(n \in \mathbb{Z}^+) = e^{2\pi i n/N}$$

 \Downarrow

Shall be made discrete and finite via **digitization** scheme

[hep-lat/1906.11213], [hep-lat/2201.09625]

The Hamiltonian limit

To derive the Kogut-Susskind Hamiltonian [Phys.Rev.D 11.395]:

- 1. temporal gauge \sim **zero-temperature limit**
- 2. anisotropic lattice with action

$$S^{\mathbf{a}} = \sum_{x} \left[-\beta_{S} \sum_{k < l} \operatorname{ReTr} \mathcal{U}_{kl}(x) - \beta_{T} \sum_{k} \operatorname{ReTr} \left[U_{k}(x+\hat{0}) U_{k}^{\dagger}(x) \right] \right]$$

3. taking the Hamiltonian limit as

$$\begin{cases} a_s = \text{fixed} & \sim \text{ discrete space} \\ a_t \to 0 & \sim \text{ continuous time} \end{cases}$$

along trajectory set by Hamiltonian coupling $g_{\rm H}$

4. Kogut-Susskind Hamiltonian

$$\mathcal{H}_{\rm KS} \cong \frac{g_{\rm H}^2}{2a_s} \sum_{\{ij\}} \ell_{ij}^2 + \frac{2}{g_{\rm H}^2 a_s} \sum_p \operatorname{ReTr} \mathcal{U}_p$$

where ℓ_{ij} is a differential operator in group parameters acting on the link connecting sites *i* and $i + \hat{j}$; e.g in U(1) $\ell_{ij} \propto -i d/d\theta_{ij}$ acting on $e^{i\theta_{ij}}$

Scaling laws of gauge couplings in the Hamiltonian limit

In the Hamiltonian limit $\beta_S \to 0$ and $\beta_T \to \infty \dots$ How exactly?

Hamiltonian from **transfer matrix**

$$\mathcal{Z} = \operatorname{Tr} \mathbf{T}^{N_t}$$
 from which $\mathbf{T} = \mathbf{1} - a_t \mathcal{H} + \mathcal{O}(a_t^2)$

To have non-trivial Hamiltonian in the continuous time limit, scaling laws are imposed

▶ **Temporal coupling**: continuous vs. discrete gauge groups

$$\begin{array}{ll} a_t \mathcal{H}_{\infty, \text{kin}} \propto \Delta_{\infty} & \Longrightarrow & \beta_T \sim \frac{1}{a_t} \\ a_t \mathcal{H}_{N, \text{kin}} \propto \Delta_N & \Longrightarrow & \beta_T \sim \log(1/a_t) \end{array}$$

with Δ_{∞} a continuous and Δ_N a discrete Laplacian in group space • Spatial coupling: $\beta_S \sim a_t$ (regardless)

The Hamiltonians

U(1) Hamiltonian ($\beta_S \rightarrow 0$ s.t. $\beta_T = 4/\beta_S g_{\rm H}^4$):

$$a_s \mathcal{H}_{\infty} \cong -\frac{g_{\rm H}^2}{4} \sum_{\substack{i \in \Lambda_s \\ j=1,2,3}} \frac{\mathrm{d}^2}{\mathrm{d}\theta_{ij}^2} + \frac{2}{g_{\rm H}^2} \sum_p \mathrm{Re}\mathcal{U}_p$$

Z(N) Hamiltonian ($\beta_S \to 0$ s.t. $\beta_T = 1/(\cos(2\pi/N) - 1)\log(g_{\rm H}^4\beta_S/4))$:

$$a_s \mathcal{H}_N \cong -\frac{g_{\rm H}^2}{4} \frac{N^2}{4\pi^2} \sum_{\substack{i \in \Lambda_s \\ j=1,2,3}} \log^2 \mathbf{P}_1 + \frac{2}{g_{\rm H}^2} \sum_p \operatorname{Re}\mathcal{U}_p$$

with \mathbf{P}_1 being a permutation matrix:

$$\mathbf{P}_1 = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

(it can be checked that $\log^2 \mathbf{P}_1$ is a discrete Laplacian up to a constant)

Anisotropic Euclidean simulations with discrete groups

Nuances of working with discrete groups:

- ▶ freezing transition occurs due to the discrete nature of the group
- ▶ which is of first order... **hysteresis**
- ▶ parallel tempering in $\beta_{S/T}$
- mixture of initial configurations

Nuances of taking the Hamiltonian limit:

▶ as $\beta_S \to 0$ and $\beta_T \to \infty$: overflow in $p_i = e^{x_i} / Z$ and $Z = \sum_i e^{x_i}$

▶ work with logarithms: "log-sum-exp trick"

$$\log \mathcal{Z} = \log \left(e^{\tilde{x}} \sum_{i} e^{x_i - \tilde{x}} \right) = \tilde{x} + \log \left(\sum_{i} e^{x_i - \tilde{x}} \right) \qquad \text{with } \tilde{x} = \max\{x_i\}$$

Phase transitions in U(1) and Z(N) lattice gauge theories

Anisotropic scan in (β_S, β_T) :

Phase transitions in U(1) and Z(N) lattice gauge theories

Hamiltonian limit from Euclidean simulations

Do the Hamiltonian limit and the $N \to \infty$ limit commute?

For fixed N_s **2(+1) numerical limits** are to be computed for U(1) or Z(N): 1. $N_t \to \infty$,

2.
$$\beta_S \to 0 \text{ and } \beta_T \to \infty$$

(with appropriate scaling law)

3.
$$N \to \infty$$
 for $Z(N)$.

Summary and Outlook

- Freezing transition due to discrete nature of the group Z(N) absent in U(1)
- Studying the freezing transition with anisotropic lattices for the first time
- Scans in the (β_S, β_T) coupling space reveals rich phase diagram for Z(N) gauge theories
- ▶ Deconfinement transition also in $Z(\gtrsim 5)$ and U(1) theories, otherwise flushed away by freezing
- ▶ Partial freezing transitions if β_S small (large) and β_T large (small)
- ▶ **Remaining question**: what happens with freezing transition in the Hamiltonian limit as $N \to \infty$, i.e., the discretization is taken to be finer?

Summary and Outlook

Future prospects: extending analysis to SU(2) and SU(3)

 Largest non-abelian subgroup of SU(3) is S(1080) (studied in detail in [hep-lat/1906.11213] with isotropic lattices)

also shows partial freezing

► $SU(3) \cong S(1080)$ \Leftrightarrow $U(1) \cong Z(3)$ ~ need something finer!

for SU(2) finer digitizations (not based on subgroups) were introduced:
T. Hartung et.al. hep-lat/2201.09625: Digitising SU(2) gauge fields and the freezing transition

Thank you!

Supported by the ÚNKP-23-3 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.