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Introduction

What is entanglement?

➔ Quantum physical implementation of conservation laws

Decay of spin-0 particle: s = 0 −→ s1 + s2 = 0

Pair creation from vacuum: s = 0 −→ s1 + s2 = 0

In a quantum field theory ➔ correlations

entangled



Introduction
How to quantify entanglement?

Bipartite quantum system: HAB = HA ⊗HB

pure state: |ψ⟩AB ∈ HAB , ρAB = |ψ⟩AB⟨ψ| → tr
(
ρ2

AB

)
= 1

orthonormal bases: |n⟩A ∈ HA, |m⟩B ∈ HB

➔ |ψ⟩AB =
∑

mn cmn |m⟩A ⊗ |n⟩B ,
∑

mn|cmn|2 = 1

➔ ρAB = |ψ⟩AB⟨ψ| =
∑

mnkl cmnc∗kl |m⟩A⟨k | ⊗ |n⟩B⟨l|

( notation: |ψ⟩C⟨ψ| = |ψ⟩C ⊗ C⟨ψ| )

Reduced density matrix: ρA = trB(ρAB) =
∑

mkl cml c
∗
kl |m⟩A⟨k |

tr
(
ρ2

A

)
= 1 ⇒ no entanglement (cmn = am bn) ⇐⇒ tr

(
ρ2

A

)
< 1 ⇒ entanglement

Entanglement measures:

➔ Purity: tr
(
ρ2

A

)
➔ Rényi entropies: Hs(A) = − 1

s−1 log tr
(
ρs

A

)
, s = 2, 3, . . .

➔ Entanglement entropy: SEE (A) = − tr(ρA log(ρA)) (von Neumann entropy corresponding to ρA)

B A
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∂((s−1)Hs(A))

∂s = lims→1 Hs(A)

AB
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Entanglement entropy on the lattice
Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

SU(N) gauge theory on Nd−1
s × Nt lattice

Partition function: Z(Nt ,Ns) =
∫
D[U] e−SG [ U ]

➔ Divide lattice into two parts (A,B)

➔ Reduced density matrix ρA for part A

〈
ψA,1

∣∣ρA
∣∣ψA,2

〉
=

rB

rB

ψA,2

ψA,1

AB

➔ Replica method for s-th Rényi entropy:

Hs(l,Nt ,Ns) =
1

1− s
log tr(ρs

A) =
1

1− s
log

Zc(l, s,Nt ,Ns)

Z s(Nt ,Ns)

with "cut partition function" Zc(l, s,Nt ,Ns)

→ Zc(l = 0, s,Nt ,Ns) = Z s(Nt ,Ns) ∀s ∈ N
→ Zc(l = Ns, s,Nt ,Ns) = Z(s Nt ,Ns) ∀s ∈ N

Ns

Ns

x

y

Nt

Ns

x

t

https://doi.org/10.1088/1742-5468/2004/06/P06002
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Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

➔ Entanglement entropy (EE):

SEE (l,Nt ,Ns) = − lim
s→1

∂ log tr
(
ρs

A

)
∂s

= −
(
lim
s→1

∂ log Zc(l, s,Nt ,Ns)

∂s
− log Z(Nt ,Ns)

)
≈ − log Zc(l, 2,Nt ,Ns) − (−2 log Z(Nt ,Ns))

= − log tr
(
ρ2

A
)
= H2(l,Nt ,Ns)

➔ free energy difference

➔ Instead of EE, measure discrete derivative w.r.t. l > 0:

∂SEE (l′,Nt ,Ns)

∂l′

∣∣∣∣
l′=l+1/2

≈

− log Zc(l + 1, 2,Nt ,Ns) − (− log Zc(l, 2,Nt ,Ns))

➔ l → l + 1 is non-local change =⇒ overlap problem

https://doi.org/10.1088/1742-5468/2004/06/P06002
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Entanglement entropy on the lattice

Overcoming the overlap problem

Original approach

[P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)],[E. Itou et al. (2015)],[A. Rabenstein et al. (2018)]

➔ interpolating partition function:

Z∗
l (α) =

∫
D[U] exp

(
−(1− α) Sl [U ] − α Sl+1[U ]

)
with α ∈ [0, 1 ]

➔ measure ⟨Sl+1 − Sl⟩α = −
∂ log Z∗

l (α)

∂α
for α ∈ [0, 1 ]

➔ interpolate and integrate:

∂SEE (l′,Nt ,Ns)

∂l′

∣∣∣∣
l′=l+1/2

≈ −
1∫

0

dα
∂ log Z∗

l (α)

∂α
=

1∫
0

dα⟨Sl+1 − Sl⟩α

Issue: huge free energy barrier→ bad signal to noise ratio

➔ Gets worse with increasing volume and increasing N (number of colors)

➔ Z∗
l (α) imposes simultaneously BCA and BCB on plaquettes P1, P2 if α ̸= 0, 1.

https://doi.org/10.1016/j.nuclphysb.2008.04.024
https://doi.org/10.22323/1.091.0188
https://doi.org/10.1093/ptep/ptw050
https://doi.org/10.1103/PhysRevD.100.034504
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Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (2+1) dimensions
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Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entanglement entropy on the lattice

Overcoming the overlap problem

Entanglement surface deformation method

➔ interpolate by deforming entangling surface

Example in (3+1) dimensions

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 2

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

l = 3

P1

P2

x1 x2

x′1 x′2

x

t

A

B1

B2

0 200 400 600

-30

-20

-10

0

n

Vs=163

(3+1)D

-
ΔF

n



Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice←→ tilted lattice
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Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ example for (2+1)d lattice:

➔ SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice←→ tilted lattice
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Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface
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➔ example for (2+1)d lattice:

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ example for (2+1)d lattice:

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ example for (2+1)d lattice:

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ example for (2+1)d lattice:

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice←→ tilted lattice

1.0 1.2 1.4 1.6 1.8 2.0

-0.15

-0.10

-0.05

0
91

l

-
dF

/d
l/

|∂
A
|



Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice←→ tilted lattice

1.0 1.2 1.4 1.6 1.8 2.0

-0.15

-0.10

-0.05

0
131

l

-
dF

/d
l/

|∂
A
|



Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions (Vs = Nx N2
s with Nx = 8, Ns = 7).

➔ SU(5) in (3+1) dimensions:
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice←→ tilted lattice
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Entangling surface deformation

Avoiding remnant free energy barriers

Remnant free energy barriers due to changing numbers of corners and edges in entangling surface

Can be avoided by appropriate tilting of lattice with respect to principal directions of "torus"

➔ SU(5) in (3+1) dimensions:

comparison of boundary update methods: non-tilted lattice←→ tilted lattice←→ local derivative
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Remaining problems

Single link overlap problem

BC swap over single non-perpendicular spatial link becomes difficult for N > 3

p(B → A) ∼ e
β
N Re tr(P1,A+P2,A)−

β
N Re tr(P1,B+P2,B) (naive Metropolis)

modified SU(2) sub-group heat-bath update incl. BC swap:

(only slightly better than simple Metropolis)

SU(2)→ pacc ∼ 0.3

SU(3)→ pacc ∼ 0.2

SU(5)→ pacc ∼ 0.005

➔ Worm-like update:

SU(2)→ pacc ∼ 0.45

SU(3)→ pacc ∼ 0.35

SU(5)→ pacc ∼ 0.1
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Remaining problems
Worm-like BC update (simplified: move choice probab. factors not shown)

pick permutation σ ∈ Π(1, . . . , s), set i = 1

while true:

randomly choose δi = ±1

if (i = 1 and δi < 0) or (i = s and δi > 0) :

end worm

set i′ = i + (δi − 1)/2

randomly pick a link U from staple of Pσ(i′)

compute one-link integrals

ZA,B =
∫
D[U] e

β
N Re tr(U SA,B)

SA,B is staple sum around U w.r.t. BCA, BCB

(one-link int. with Cayley-Hamilton: [TR (2024)])

with probab. p(δi) = min(1, (ZA/ZB)
δi) :

change BC for Pσ(i′)

set i = i + δi

generate new value for U

(using heat-bath dist. w.r.t. current BC)
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Remaining problems

Remnant "single cube" free energy barrier?

For ℓ > 2 non-monotonic change in free energy during BC change for single spatial cube

➔ auto-correlation issue?

➔ can it be avoided?
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Conclusions & outlook
Conclusions

Entangling surface deformation method with tilted lattice and/or local derivative essentially avoids free energy barriers in

determination of entanglement measures (Rényi entropies) in SU(N) lattice gauge theories.

Worm-like update for temporal BC flip over spatial link results in significantly higher acceptance rates.

(but still small as N increases)

Remnant "single cube" free energy barrier can show up for ℓ > 2.

Outlook
Some ideas to overcome the "single cube" free energy barriers and improve acceptance rates for BC updates further.

Aplications: entropic c-function for SU(2) , SU(3) , SU(5) , mutual information, ...

Thank you!
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