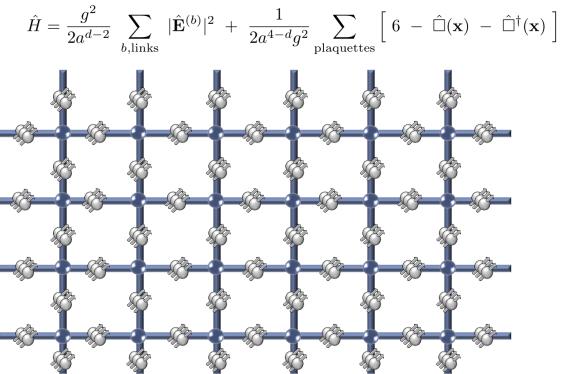
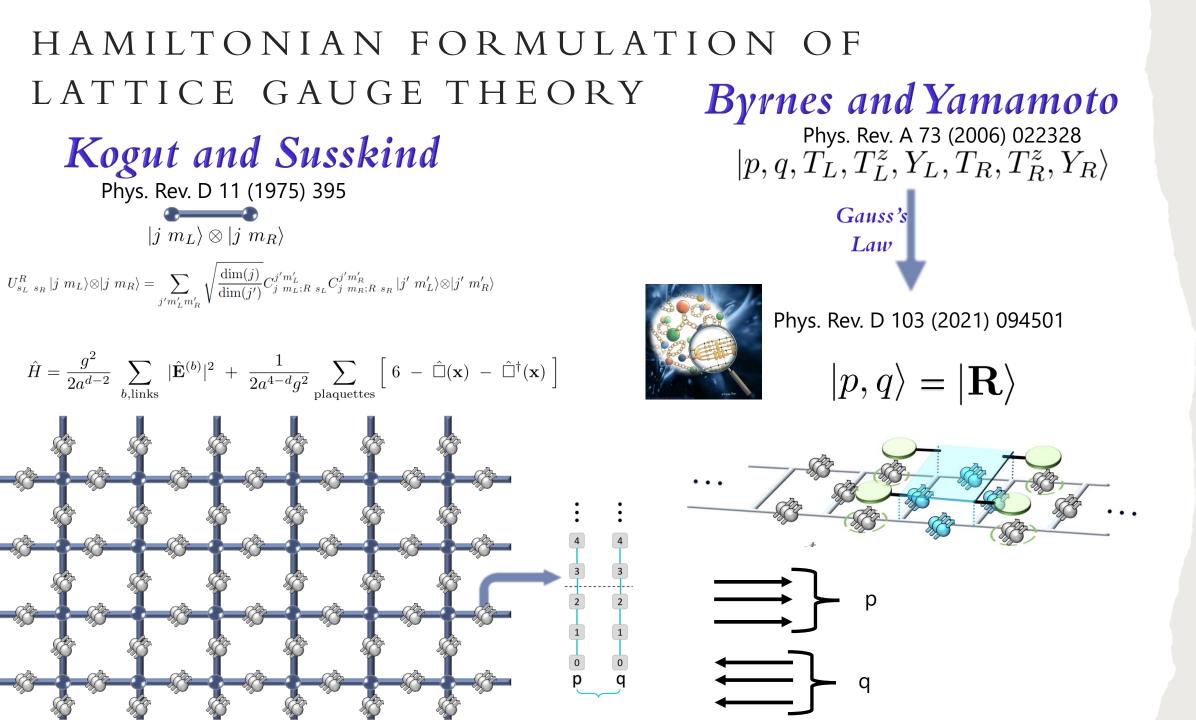
QUANTUM SIMULATION OF SU(3) LGT AT LEADING ORDER IN LARGE N

Anthony Ciavarella

HAMILTONIAN FORMULATION OF LATTICE GAUGE THEORY

Kogut and Susskind Phys. Rev. D 11 (1975) 395 $|j \ m_L\rangle \otimes |j \ m_R\rangle$ $U_{s_L \ s_R}^R |j \ m_L\rangle \otimes |j \ m_R\rangle = \sum_{j'm'_Lm'_R} \sqrt{\frac{\dim(j)}{\dim(j')}} C_{j \ m_L;R \ s_L}^{j'm'_R} C_{j \ m_R;R \ s_R}^{j'm'_R} |j' \ m'_L\rangle \otimes |j' \ m'_R\rangle$





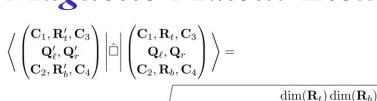
OPERATORS IN THE MULTIPLET FORMULATION

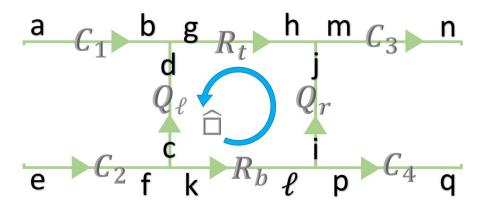
 $\frac{1}{\dim(\mathbf{R}_{t}^{\prime})\dim(\mathbf{R}_{b}^{\prime})\dim(\mathbf{Q}_{\ell})\dim(\mathbf{Q}_{r})\dim(\mathbf{Q}_{\ell}^{\prime})^{3}\dim(\mathbf{Q}_{r}^{\prime})^{3}}$

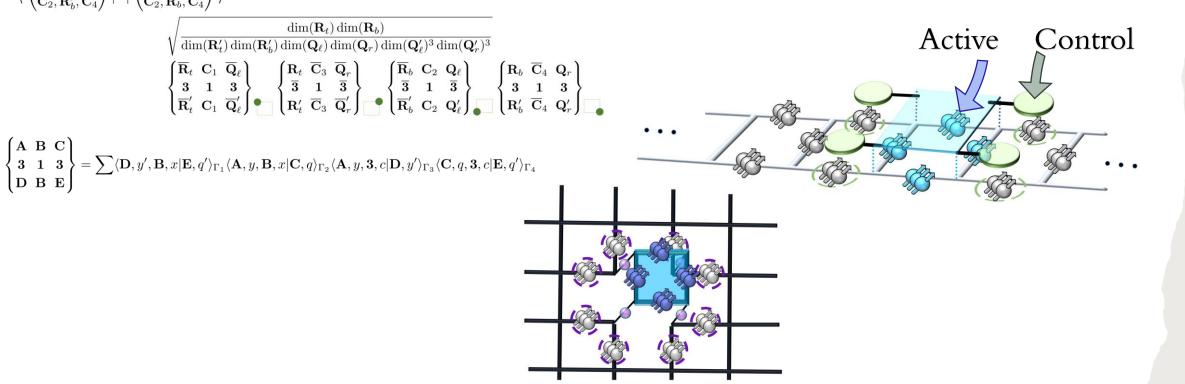
Electric Matrix Element

$$\sum_{b} |\hat{\mathbf{E}}^{(b)}|^2 |p,q\rangle = \frac{p^2 + q^2 + pq + 3p + 3q}{3} |p,q\rangle$$

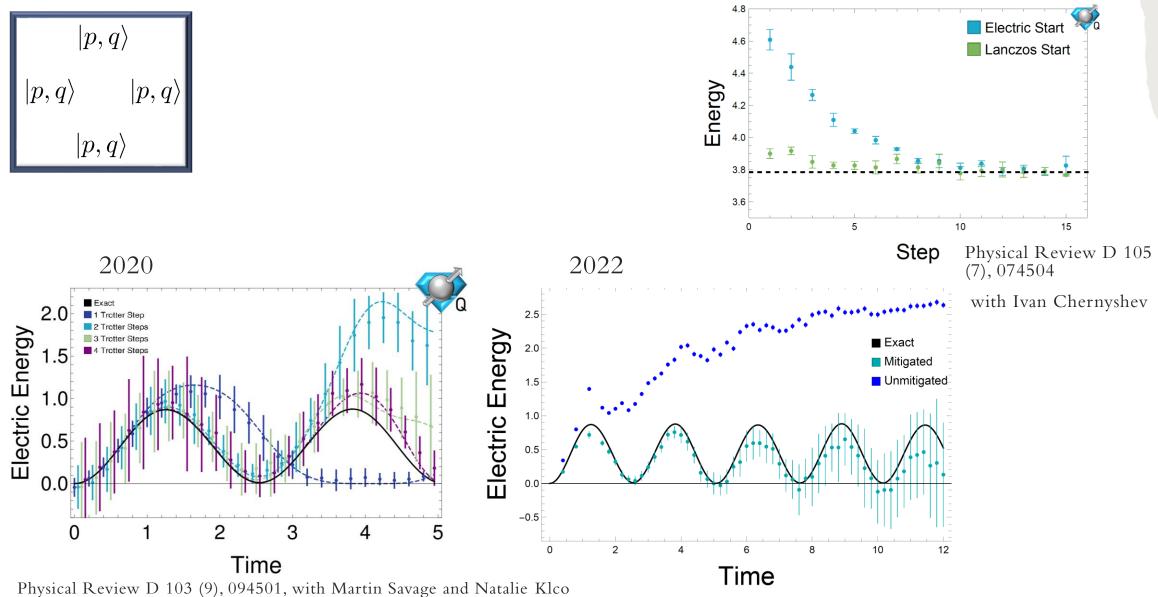
Magnetic Matrix Element



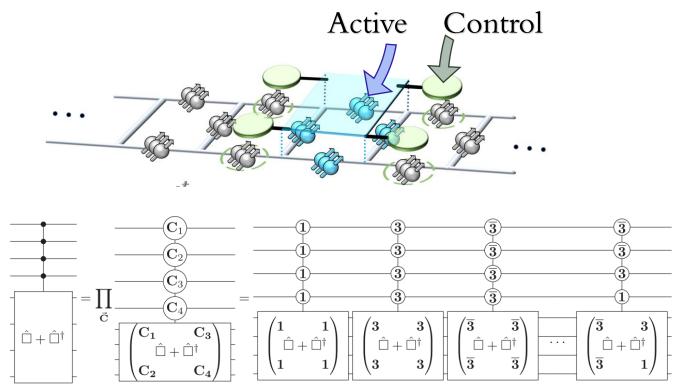


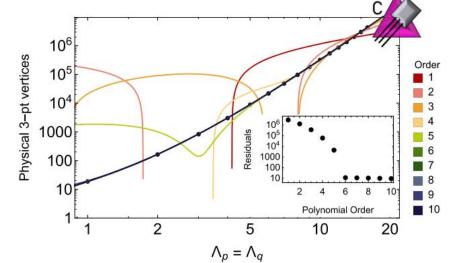


SIMULATION OF SMALL SYSTEMS



CHALLENGES OF GOING TO SCALE





- Gate count for time evolution scales as Λ^{16}

LARGE N EXPANSION

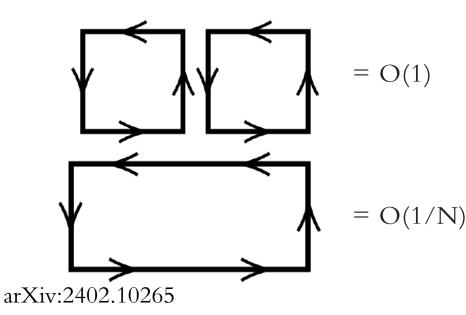
 $SU(3) \longrightarrow SU(N)$, Expand in 1/N

- Qualitatively reproduces many aspects of QCD
- Provides a starting point for describing interactions between baryons
- Used in event generators that simulate collider physics

LARGE N EXPANSION

 $SU(3) \longrightarrow SU(N)$, Expand in 1/N

- Qualitatively reproduces many aspects of QCD
- Provides a starting point for describing interactions between baryons
- Used in event generators that simulate collider physics



- Expand operators in powers of 1/N
- Truncate both in powers of 1/N and electric energy
- The large N scaling of a state is determined by the maximum overlap of the state with $|\{P_p, \bar{P}_p\}\rangle \equiv \prod_p \hat{\Box}_p^{P_p} \hat{\Box}_p^{\dagger \bar{P}_p} |0\rangle$
- Simple scaling rule

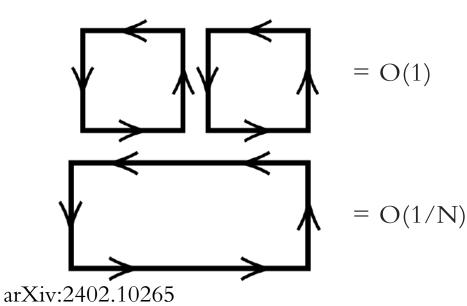
 $\left< \{L_i, a_\ell\} \left| \{P_p, \bar{P}_p\} \right> \propto \prod_i N_c^{1-m_i}$

 $m_i = \#$ Plaquettes enclosed by loop i

LARGE N EXPANSION

 $SU(3) \longrightarrow SU(N)$, Expand in 1/N

- Qualitatively reproduces many aspects of QCD
- Provides a starting point for describing interactions between baryons
- Used in event generators that simulate collider physics

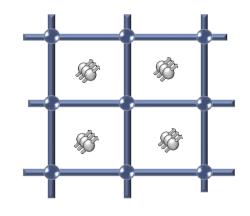


- Expand operators in powers of 1/N
- Truncate both in powers of 1/N and electric energy
- The large N scaling of a state is determined by the maximum overlap of the state with $|\{P_p, \bar{P}_p\}\rangle \equiv \prod_p \hat{\Box}_p^{P_p} \hat{\Box}_p^{\dagger \bar{P}_p} |0\rangle$
- Simple scaling rule

$$\left\langle \{L_i, a_\ell\} \middle| \{P_p, \bar{P}_p\} \right\rangle \propto \prod_i N_c^{1-m_i}$$

 $m_i = \#$ Plaquettes enclosed by loop i

• At large N, only need to represent the number of loops running around each square



LARGE N TRUNCATION

- The Hamiltonian can be truncated in 1/N as well as in irreps
- This reduces both the qubit count and computational cost

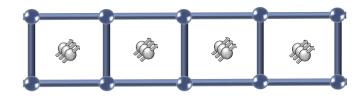
LARGE N TRUNCATION

- The Hamiltonian can be truncated in 1/N as well as in irreps
- This reduces both the qubit count and computational cost
- At the harshest truncation, only one qubit is required per plaquette

$$\begin{split} \hat{H} = & \sum_{p} \left(\frac{8}{3} g^2 - \frac{1}{2g^2} \right) \hat{P}_{1,p} \\ & - \frac{1}{g^2 \sqrt{2}} \hat{P}_{0,p+\hat{x}} \hat{P}_{0,p-\hat{x}} \hat{P}_{0,p+\hat{y}} \hat{P}_{0,p-\hat{y}} \hat{X}_p \end{split}$$

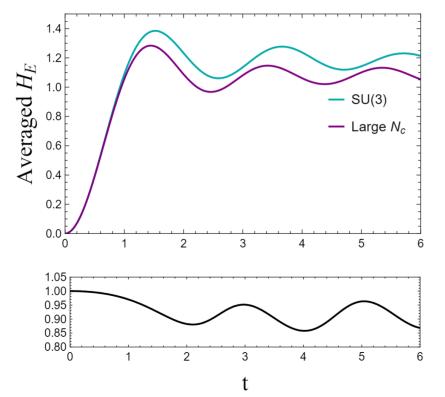
LARGE N TRUNCATION

- The Hamiltonian can be truncated in 1/N as well as in irreps
- This reduces both the qubit count and computational cost
- At the harshest truncation, only one qubit is required per plaquette
- Resources can be compared for a small lattice at this truncation (4x1)



	Naïve Encoding	Multiplet Basis	Large N _c
Qubit Count	60	24	4
Gauss's law enforced	No	Partially	Partially
18	1)		

$$\hat{H} = \sum_{p} \left(\frac{8}{3}g^2 - \frac{1}{2g^2}\right) \hat{P}_{1,p} \\ -\frac{1}{g^2\sqrt{2}} \hat{P}_{0,p+\hat{x}} \hat{P}_{0,p-\hat{x}} \hat{P}_{0,p+\hat{y}} \hat{P}_{0,p-\hat{y}} \hat{X}_p$$



Interaction Picture Trotterization

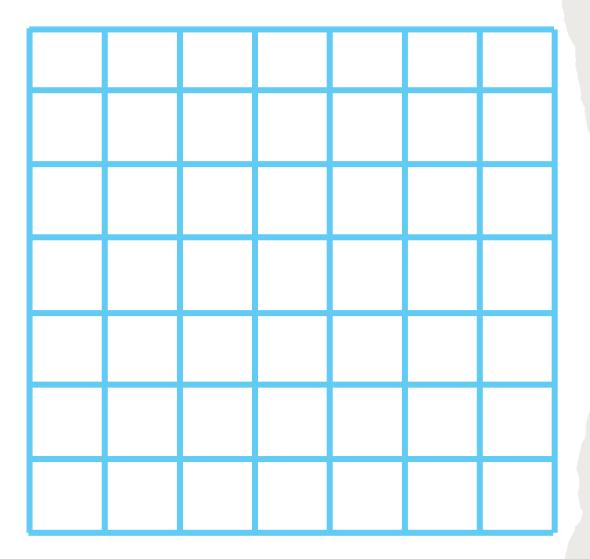
$$\hat{H}_{B,I}(t) = e^{i\hat{H}_E t}\hat{H}_B e^{-i\hat{H}_E t}$$

$$e^{-i\hat{H}t} = e^{-i\hat{H}_E t} \mathcal{T} e^{-i\int_0^t ds\hat{H}_{B,I}(s)}$$

$$e^{-i\int_0^{\Delta t} ds\hat{H}_{B,I}(s)} = e^{-i\int_0^{\Delta t} ds\hat{H}_{B,E}(s)} e^{-i\int_0^{\Delta t} ds\hat{H}_{B,O}(s)} + \mathcal{O}\left(\frac{\Delta t^2}{g^4}\right)$$

$$e^{-i\int_0^{\Delta t} ds\hat{H}_{B,E}(s)} e^{-i\int_0^{\Delta t} ds\hat{H}_{B,O}(s)} =$$

$$\left[e^{i\phi\sum_p \hat{Z}_p}\right] \left[e^{i\theta\sum_{p\in E} \hat{X}_p \prod_{q\in\partial p} \hat{P}_{0,q}}\right] \left[e^{i\theta\sum_{p\in O} \hat{X}_p \prod_{q\in\partial p} \hat{P}_{0,q}}\right] \left[e^{-i\phi\sum_p \hat{Z}_p}\right]$$



Interaction Picture Trotterization

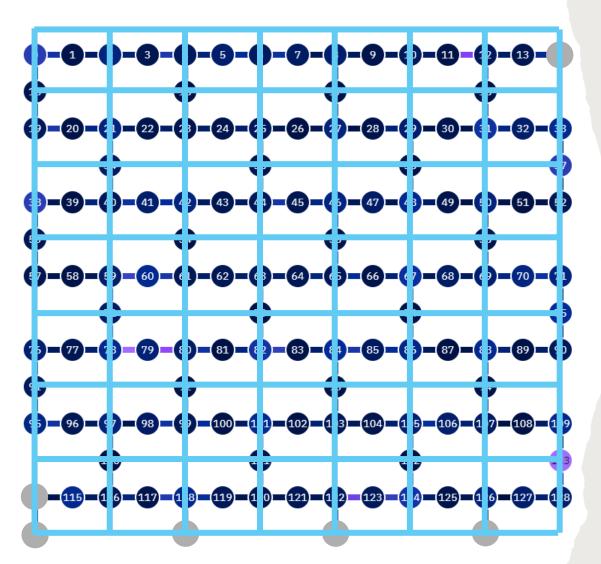
$$\hat{H}_{B,I}(t) = e^{i\hat{H}_E t}\hat{H}_B e^{-i\hat{H}_E t}$$

$$e^{-i\hat{H}t} = e^{-i\hat{H}_E t} \mathcal{T} e^{-i\int_0^t ds\hat{H}_{B,I}(s)}$$

$$e^{-i\int_0^{\Delta t} ds\hat{H}_{B,I}(s)} = e^{-i\int_0^{\Delta t} ds\hat{H}_{B,E}(s)} e^{-i\int_0^{\Delta t} ds\hat{H}_{B,O}(s)} + \mathcal{O}\left(\frac{\Delta t^2}{g^4}\right)$$

$$e^{-i\int_0^{\Delta t} ds\hat{H}_{B,E}(s)} e^{-i\int_0^{\Delta t} ds\hat{H}_{B,O}(s)} =$$

$$\left[e^{i\phi\sum_p \hat{Z}_p}\right] \left[e^{i\theta\sum_{p\in E} \hat{X}_p \prod_{q\in\partial p} \hat{P}_{0,q}}\right] \left[e^{i\theta\sum_{p\in O} \hat{X}_p \prod_{q\in\partial p} \hat{P}_{0,q}}\right] \left[e^{-i\phi\sum_p \hat{Z}_p}\right]$$



Interaction Picture Trotterization

$$\hat{H}_{B,I}(t) = e^{i\hat{H}_E t}\hat{H}_B e^{-i\hat{H}_E t}$$

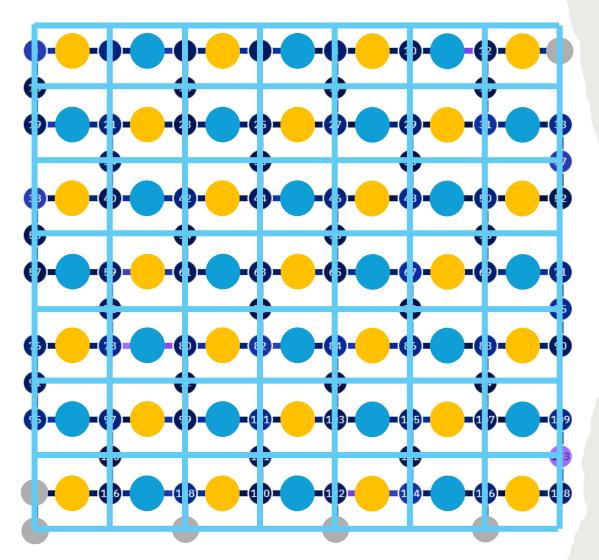
$$e^{-i\hat{H}t} = e^{-i\hat{H}_E t} \mathcal{T} e^{-i\int_0^t ds\hat{H}_{B,I}(s)}$$

$$e^{-i\int_0^{\Delta t} ds\hat{H}_{B,I}(s)} = e^{-i\int_0^{\Delta t} ds\hat{H}_{B,E}(s)} e^{-i\int_0^{\Delta t} ds\hat{H}_{B,O}(s)} + \mathcal{O}\left(\frac{\Delta t^2}{g^4}\right)$$

$$e^{-i\int_0^{\Delta t} ds\hat{H}_{B,E}(s)} e^{-i\int_0^{\Delta t} ds\hat{H}_{B,O}(s)} =$$

$$\left[e^{i\phi\sum_p \hat{Z}_p}\right] \left[e^{i\theta\sum_{p\in E} \hat{X}_p \prod_{q\in\partial p} \hat{P}_{0,q}}\right] \left[e^{i\theta\sum_{p\in O} \hat{X}_p \prod_{q\in\partial p} \hat{P}_{0,q}}\right] \left[e^{-i\phi\sum_p \hat{Z}_p}\right]$$

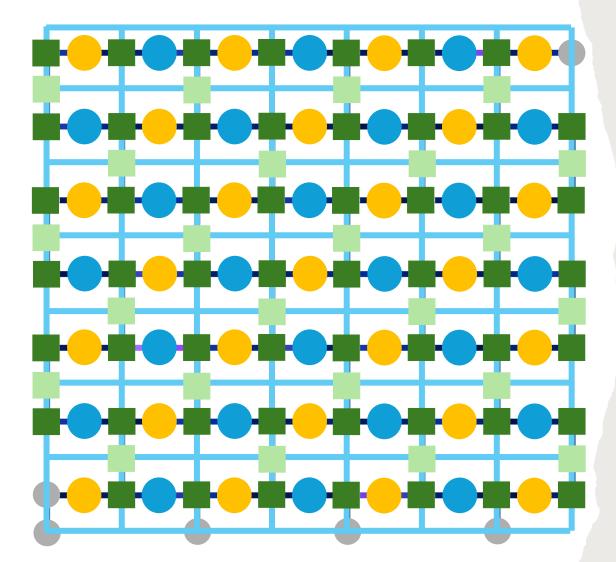
• Yellow and blue qubits are used to represent the state of the system



Interaction Picture Trotterization

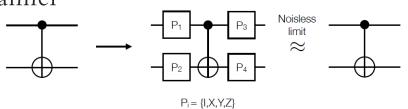
$$\begin{split} \hat{H}_{B,I}(t) &= e^{i\hat{H}_{E}t}\hat{H}_{B}e^{-i\hat{H}_{E}t}\\ e^{-i\hat{H}t} &= e^{-i\hat{H}_{E}t} \mathcal{T}e^{-i\int_{0}^{t}ds\hat{H}_{B,I}(s)}\\ e^{-i\int_{0}^{\Delta t}ds\hat{H}_{B,I}(s)} &= e^{-i\int_{0}^{\Delta t}ds\hat{H}_{B,E}(s)}e^{-i\int_{0}^{\Delta t}ds\hat{H}_{B,O}(s)} + \mathcal{O}\left(\frac{\Delta t^{2}}{g^{4}}\right)\\ e^{-i\int_{0}^{\Delta t}ds\hat{H}_{B,E}(s)}e^{-i\int_{0}^{\Delta t}ds\hat{H}_{B,O}(s)} &= \\ \left[e^{i\phi\sum_{p}\hat{Z}_{p}}\right] \left[e^{i\theta\sum_{p\in E}\hat{X}_{p}\prod_{q\in\partial p}\hat{P}_{0,q}}\right] \left[e^{i\theta\sum_{p\in O}\hat{X}_{p}\prod_{q\in\partial p}\hat{P}_{0,q}}\right] \left[e^{-i\phi\sum_{p}\hat{Z}_{p}}\right] \end{split}$$

- Yellow and blue qubits are used to represent the state of the system
- Square qubits are used to enable communication between those used to represent the system
- One Trotter step = CNOT depth 45



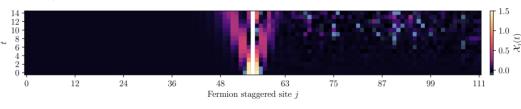
• Quantum simulations have errors coming from inherent hardware errors

- Quantum simulations have errors coming from inherent hardware errors
- Pauli Twirling (or randomized compiling)
 Pauli twirling converts coherent errors into a Pauli error channel

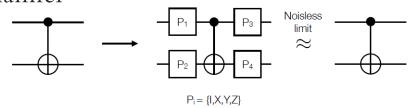


- Quantum simulations have errors coming from inherent hardware errors
- Pauli twirling converts coherent errors into a Pauli error channel
- Decoherent Pauli noise renormalizes Pauli operators $\langle \psi | \hat{P} | \psi \rangle \rightarrow \eta_P \langle \psi | \hat{P} | \psi \rangle$
- This can be mitigated by running a circuit with a known answer to determine η_P

Operator Decoherence Renormalization Phys. Rev. Lett. 127, 270502 arXiv:2210.11606 PRX Quantum 5, 020315 Phys. Rev. D 109, 114510



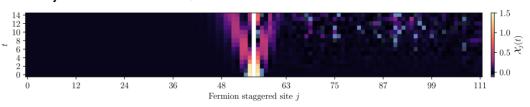
113 qubits, CNOT depth 370 (13,858 CNOTs)



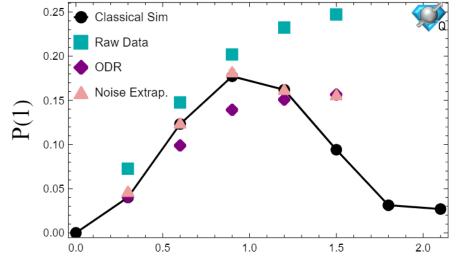
Pauli Twirling (or randomized compiling)

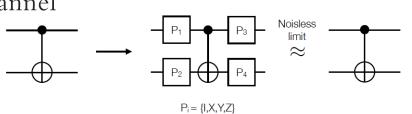
- Quantum simulations have errors coming from inherent hardware errors
- Pauli twirling converts coherent errors into a Pauli error channel
- Decoherent Pauli noise renormalizes Pauli operators $\langle \psi | \hat{P} | \psi \rangle \rightarrow \eta_P \langle \psi | \hat{P} | \psi \rangle$
- This can be mitigated by running a circuit with a known answer to determine η_P
- Other sources of hardware error can be mitigated by artificially introducing noise by applying more CNOT gates and extrapolating to zero noise.

Operator Decoherence Renormalization Phys. Rev. Lett. 127, 270502 arXiv:2210.11606 PRX Quantum 5, 020315 Phys. Rev. D 109, 114510



113 qubits, CNOT depth 370 (13,858 CNOTs)





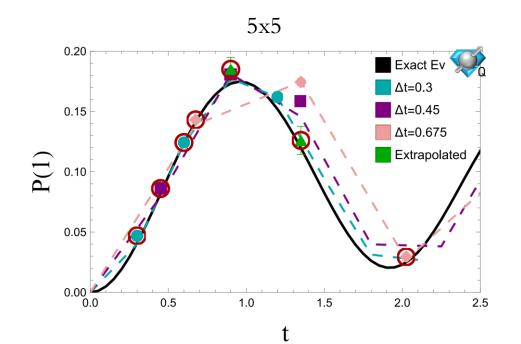
Pauli Twirling (or randomized compiling)

ALGORITHMIC ERRORS

- Errors also come from the Trotterization of the time evolution operator.
- This can be mitigated by performing the evolution with multiple step sizes that sample the same points in time and extrapolating.

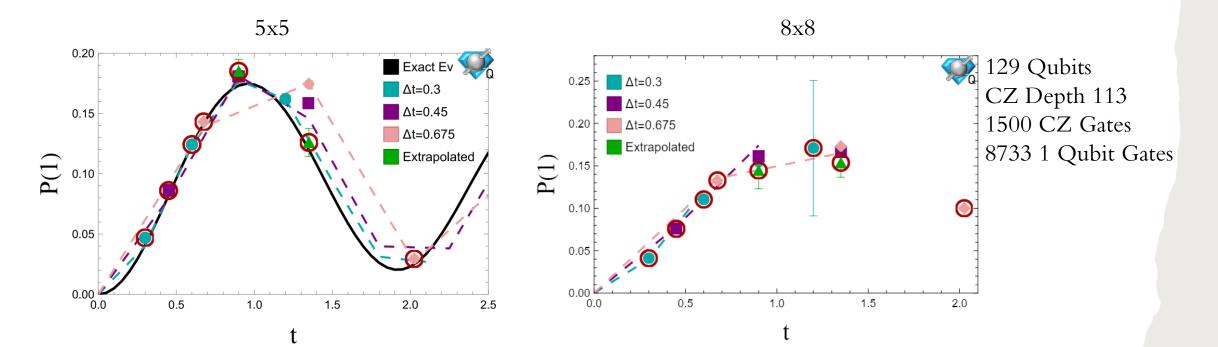
ALGORITHMIC ERRORS

- Errors also come from the Trotterization of the time evolution operator.
- This can be mitigated by performing the evolution with multiple step sizes that sample the same points in time and extrapolating.



ALGORITHMIC ERRORS

- Errors also come from the Trotterization of the time evolution operator.
- This can be mitigated by performing the evolution with multiple step sizes that sample the same points in time and extrapolating.
- Noise in circuits scales with circuit depth not system size so small simulations can be used to validate the results of larger ones.
- CuQuantum was used to perform a classical simulation for a 8x8 lattice.



SUMMARY & FUTURE GOALS

- The large N expansion can be used to reduce the resources needed for simulation.
- The truncated Hamiltonian is similar to the PXP model indicating there may be connections to condensed matter work on scarring and confinement in spin models.
- This also allows for straightforward implementation on neutral atom platforms.
- Future work will look at including quarks and 1/N corrections.

