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C H A L L E N G E S  O F  G O I N G  T O  S C A L E

• Gate count for time evolution scales as Λ16
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• Expand operators in powers of 1/N

• Truncate both in powers of 1/N and 

electric energy

• The large N scaling of a state is 

determined by the maximum 

overlap of the state with

• Simple scaling rule

𝑚𝑖 =# Plaquettes enclosed by loop i

• At large N, only need to represent 

the number of loops running around 

each square

= O(1)

= O(1/N)
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L A R G E  N  T RU N C AT I O N

• The Hamiltonian can be truncated in 1/N as well as in irreps

• This reduces both the qubit count and computational cost

• At the harshest truncation, only one qubit is required per plaquette

• Resources can be compared for a small lattice at this truncation (4x1)
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R E A L  T I M E  E V O L U T I O N  O N  I B M ’ S  

Q U A N T U M  C O M P U T E R S

• Yellow and blue qubits are used to 

represent the state of the system

• Square qubits are used to enable 

communication between those used to 

represent the system

• One Trotter step = CNOT depth 45

Interaction Picture Trotterization
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• This can be mitigated by running a circuit with a known answer to determine 𝜂𝑃

• Other sources of hardware error can be mitigated by artificially introducing noise by 

applying more CNOT gates and extrapolating to zero noise. 5x5

Operator Decoherence Renormalization
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A L G O R I T H M I C  E R RO R S

• Errors also come from the Trotterization of the time evolution operator.

• This can be mitigated by performing the evolution with multiple step sizes that sample 

the same points in time and extrapolating.

• Noise in circuits scales with circuit depth not system size so small simulations can be 

used to validate the results of larger ones.

• CuQuantum was used to perform a classical simulation for a 8x8 lattice.

5x5 8x8

129 Qubits

CZ Depth 113

1500 CZ Gates

8733 1 Qubit Gates



S U M M A RY  &  F U T U R E  G O A L S

• The large N expansion can be used to reduce the 

resources needed for simulation.

• The truncated Hamiltonian is similar to the PXP model 

indicating there may be connections to condensed matter 

work on scarring and confinement in spin models.

• This also allows for straightforward implementation on 

neutral atom platforms.

• Future work will look at including quarks and 1/N

corrections.


