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Introduction

Motivations
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@ Exploring supersymmetric model using quantum resources

@ Benchmarking quantum algorithm in searching for supersymmetry breaking
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Why is supersymmetry such an interesting theoretical idea?
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Better knowledge of QFT

@ Predicted sparticles have not been observed yet = supersymmetry must be spontaneously broken!
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Essential facts about supersymmetric models

@ A supercharge @ introduces a symmetry between fermion and boson

Q|fermion) = |boson)  Q|boson) = |fermion)

@ The Hamiltonian is ~ @2

@ The energy spectrum has peculiar characteristics for broken/preserved supersymmetry:

Preserved symmetry Spontaneously breaking
Eo = (V|H|V) =0 Eo = (VIH|V) >0
Single ground state All the states are paired

Paired excited states

@ The Witten index expresses a condition necessary but insufficient for supersymmetry breaking:

W=Tr[(-1)fe =0 = Z=0 = Sign problem
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Why should we consider quantum computing?

@ Hamiltonian approach becomes feasible = (Hilbert space scales polynomially on qubits)
@ Real-time dynamical phenomena are fully accessible = (No sign problem)

@ Supersymmetry breaking can be directly investigated by measuring the ground state
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Challenges in the use of the available quantum hardware:

o Few qubits with low connectivity
@ Errors in reading the qubits

o Noisy gates

@ Low computation resources

@ No error correction techniques available on current hardware = Only error mitigation techniques!

4

Focusing on simple supersymmetric models on lower dimensions:
@ 0 + 1 Supersymmetric quantum mechanics (In this talk)

o 1+ 1 Wess-Zumino model
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0+1 Supersymmetric Quantum Mechanics

@ Single site model with one fermion and one boson interacting

H=5{QQ) = (B + W@P - W@ [B5]),  with supercharge Q= bl + W/(2)
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0+1 Supersymmetric Quantum Mechanics

@ Single site model with one fermion and one boson interacting

H=5{QQ) = (B + W@P - W@ [B5]),  with supercharge Q= bl + W/(2)

Harmonic Oscillator Anharmonic Oscillator Double Well
W(§) = 3ma’ W(g) = 3mé? + ;gd W(g) = imé® + g (38° + 1%4)
[Supersymmetric] [Supersymmetric] [Spontaneously breaking]
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0+1 Supersymmetric Quantum Mechanics

@ Single site model with one fermion and one boson interacting

H=5{QQ) = (B + W@P - W@ [B5]),  with supercharge Q= bl + W/(2)

Harmonic Oscillator Anharmonic Oscillator Double Well
W(§) = 3ma’ W(g) = 3mé? + ;gd W(g) = imé® + g (38° + 1%4)
[Supersymmetric] [Supersymmetric] [Spontaneously breaking]

o Fermion operators =>  Jordan-Wigner transformation b = 2(X+iY) and bt = 2(X—iY)

@ Boson operators = ¢ and p from the Harmonic oscillator truncated to A modes
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14+1 Wess-Zumino Model

@ N-site model with N fermions and N bosons interacting at each site

2 — 2 a n+1—@n—1 n I
H= Q2 = Z:Iyzl {2&; + g (%Hzij)nil) + §V(¢n)2 + av(ﬁén)% + (_1) V/(¢n) (XLXn - %) + i (XLXnJrl + X/T1+1Xn)}

Linear prepotential Quadratic prepotential
V(¢n) = én V(¢n) = 95+ ¢
[Supersymmetric] [Dynamical breaking]

o Fermion fields =>  Jordan-Wigner transformation x, = (X, + iY,) and x| = 3(X, — iYy)

@ Boson fields = g and p from the Harmonic oscillator using A modes
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Toward quantum Computing

Toward quantum Computing
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Variational Quantum Eigensolver (VQE)

@ VQE is a heuristic hybrid quantum-classical algorithm to find the ground state

Adjust parameters with results, and re-run @i 1

Quantum

I
I
Ansatz U4 (01) i Classical
I
I
|

Reference

Preparation Function
Optimization

@ |0) = Ansatz = |¢(0;)) = Measurements = (¥(6;)|H|(0;)) = C. Optimizer = new (6;) = Re-run
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VQE Results

VQE preliminary results
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VQE results and box-and-whisker plot

Essential on box-and-whisker plot
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@ Preserved supersymmetry, VQE agrees!

box plot for Gaussian distribution
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VQE without shots noise

Double Well (no shot noise)

Anharmonic Oscillator (no shot noise)

Exact (A = 32)
32 Exact (A = 16) 324 |:|:| ©
—— Exact (A =8)
Exact (A = 4)
1
—_ | Exact (A = 2) -
S 216 Fxoo o
3] %Uj Exact (A = 32)
B 54 Exact (A = 16)
E 8 - £ 8 + —— Exact (A = 8)
=) = Exact (A = 4)
g 5 Exact (A = 2)
(%] %]
8 4 | 8 4 *
24 *‘ 2] *
0.900 0925 0.950 0975 1000 1.025 1.050 1.075 10°° 10 103 102 10! 10° 10! 10°
VQE ground state energy VQE ground state energy
@ Supersymmetry breaking, VQE agrees! @ Preserved supersymmetry, VQE disagrees!
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VQE Results

VQE with shots noise
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@ Preserved supersymmetry, VQE disagrees!

VQE ground state energy
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@ Supersymmetry breaking, VQE agrees!
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VQE with /without shot noise

Anharmonic Oscillator

(no shot noise)
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@ Preserved supersymmetry, VQE disagrees!
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@ Preserved supersymmetry, VQE disagrees!
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Conclusions
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Take-home message

What we have seen:

@ Supersymmetric lattice models can be encoded on quantum hardware using quantum resources that
scale polynomially.

@ Supersymmetry breaking/preserved can be checked with the VQE

o VQE agrees with classical results for small systems

@ For larger systems the VQE classical optimizer can get stuck in local minima

@ Shot noise negatively impacts VQE performance, especially for larger systems
Ongoing work:

@ Explore different VQE ansatzes and optimizers

@ Run on quantum hardware and mitigate the hardware noise
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Thank you all for your time!



Time for Questions!



Backup Slides



VQE measurement protocol for checking supersymmetry breaking/preservation

@ Choose a superpotential

@ Fix the bosonic modes A

@ Choose an Ansatz (RealAmplitude)
@ Choose an optimizers (Constrained Optimization by Linear Approximation (COBYLA) )
o Perform N VQE runs

@ Increase the bosonic modes A

@ Conclude on breaking/preserved supersymmetry

Run specifications:
100 VQE runs, 10k shots, 10k max optimizer iterations

2/3



Number of Pauli strings

Number of Pauli strings

0 + 1 Supersymmetric Quantum Mechanics

0 4+ 1 Supersymmetric Quantum Mechanics

A Hsize N. qubits Harmonic Oscillator Double Well Anharmonic Oscillator
2 4x4 2 3 5 4

4 8x8 3 4 15 11

8 16x16 4 5 48 32

16 32 x 32 5 6 132 92

32 64 x 64 6 7 337 240
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