

Doubly Charmed $\Lambda_c\Lambda_c$ Scattering from Lattice QCD

Yiqi Geng

Institute of Morden Physics, and Nanjing Normal U.

Collaborators:

Liuming Liu, Peng Sun, Jia-Jun Wu, Hanyang Xing, Zhicheng Yan, Ruilin Zhu

yqgeng@njnu.edu.cn liuming@impcas.ac.cn sunpeng19820124@gmail.com wujiajun@ucas.ac.cn

41st Lattice Conference, July 30th, 2024, University of Liverpool

Outline

- Motivation
- Lattice Setup
- Calculation Methodology
- Analyses and Result
- Summary

• Recently, many charmed exotic states beyond conventional quark model were found in experiments. Such as T_{cc}^+ which can be explained well on Lattice.

[see talks given at LT1 room, 29th afternoon]

- Study of Baryon-Baryon interaction have many challenges on Lattice.
- Deuteron bound state haven't been confirmed in the lattice calculation.

[Saman Amarasinghe et al. PRD 107 (2023) 9, 094508]

 The same with ΛΛ system, which is also known as H dibaryon.

[Kenji Sasaki et al. Nucl.Phys.A 998 (2020) 121737]

[Jeremy R. Green et al. PRL. 127 (2021) 24, 242003]

What about $\Lambda_c \Lambda_c$?

Lattice Setup

[Z.C. Hu et al. PRD 109 (2024) 5, 054507]

- Two Wilson-Clover lattice ensembles are used in this work.
- They are space-time symmetrical and 2+1 flavor.
- The same pion mass and lattice spacing, but different volume.

		F
		\vdash
		L
		╞

ensemble	$(L/a)^3 \times T/a$	eta	a(fm)	$m_{\pi}(\text{MeV})$	$m_K({ m MeV})$	$m_{\pi} \times L$	N_{conf}
F32P30	$32^3 \times 96$	6.41	0.07746(18)	303.2(1.3)	524.6(1.8)	3.81	567
F48P30	$48^3 \times 96$	6.41	0.07746(18)	303.4(0.9)	523.6(1.4)	5.72	201

• Mass of particles/MeV

particle	$m_{latt.}$		particle	$m_{latt.}$
π	303.2(1.2)		π	303.4(0.9)
N	1069.7(4.8)		N	1062.4(1.9)
Λ_c	2411.5(2.9)		Λ_c	2410.5(1.2)
Σ_c	2571.8(2.9)		Σ_c	2565.9(1.3)
Ξ_{cc}	3747.7(1.0)		Ξ_{cc}	3750.5(0.7)
F32P30		. ,	F48	3P30

• Energy levels of thresholds /MeV

threshold	Elatt.	threshold	$E_{latt.}$
$\Xi_{cc} N$	4817.4(5.8)	$\Xi_{cc} \mathrm{N}$	4812.9(2.6)
$\Lambda_c\Lambda_c$	4822.9(5.8)	$\Lambda_c\Lambda_c$	4820.9(2.5)
$\Xi_{cc}N\pi$	5120.6(6.0)	$\Xi_{cc}N\pi$	5116.3(3.5)
$\Sigma_c \Sigma_c$	5143.5(5.8)	$\Sigma_c \Sigma_c$	5131.7(2.6)
F32P30		F48	P30

• Lüscher's finite volume method [M. Lüscher, Nucl. Phys. B. 354 (1991) 531-578]

$\det[1+i\rho T(1+i\mathcal{M})]=0$

• $\rho \sim \text{phase space}$ • $T \sim \text{scattering amplitude}$ • $\mathcal{M} \sim \text{Lüscher matrix}$

• For *S* wave spin-zero case:
$$\mathcal{M}_{00}(\tilde{q}^2) = \frac{2}{\sqrt{\pi L}} Z_{00}(1; \tilde{q}^2)$$

[see talk: LT1 room, 29th 11:35 given by Nelson Pitanga Lachini]

- Distillation quark smearing method [Michael Peardon et al, PRD 80 (2009) 054506]
 - Improve precision Efficient for large numbers of operations

[see talks given at LT1 room, 30th morning]

• Operator construction

• Single baryon

$$B(k, x^{0}) = \sum_{\vec{x}} P_{+} \varepsilon_{abc} r_{ax} \left[s_{bx}^{T} (C\gamma_{5}) t_{cx} \right] e^{-i\vec{k}\cdot\vec{x}}$$
$$\mathcal{O}_{B_{1}B_{2}}^{\Lambda}(|\vec{k}|) = \sum_{j} c_{j}^{\Lambda} B_{1}^{T}(|\vec{k}|) C\gamma_{5}B_{2}(-|\vec{k}|)$$

• Correlation function

• Two baryons

 $C(t) = \langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0) \rangle \approx Ae^{-Et}$

- Generalized eigenvalue problem(GEVP) $C(t)v_{\alpha}(t,t_0) = \lambda_{\alpha}(t,t_0)C(t_0)v_{\alpha}(t,t_0)$
 - Eigenvalue $\lambda_{\alpha}(t, t_0) \sim e^{-E_{\alpha}(t-t_0)}$

• Energy Fitting Method

Since these energy levels are quite close to their corresponding free energies, a ratio form fitting could perform better

$$C_R(t) = \frac{C_{BB}(t)}{C_{thre.}(t)} \simeq A e^{-(E_{BB}-2m_{\Lambda_c})t} = A e^{-\Delta E t}$$

• Couple channels

To explore the states near $\Lambda_c \Lambda_c 0(0^+)$ threshold, three channels are taken into consideration in A_1^+ irrep, i.e. $\Xi_{cc} N$, $\Lambda_c \Lambda_c$ and $\Sigma_c \Sigma_c$.

- single baryon $\Lambda_c 0\left(\frac{1}{2}^+\right), \Sigma_c 1\left(\frac{1}{2}^+\right), \Xi_{cc} \text{ and } N\frac{1}{2}\left(\frac{1}{2}^+\right)$
- two baryons

$$\begin{split} \Lambda_c \Lambda_c^{I=0} &= [\Lambda_c \Lambda_c] \\ \Sigma_c \Sigma_c^{I=0} &= \frac{1}{\sqrt{3}} \left([\Sigma_c^{++} \Sigma_c^0] - [\Sigma_c^{+} \Sigma_c^{+}] + [\Sigma_c^{++} \Sigma_c^0] \right) \\ \Xi_{cc} N^{I=0} &= \frac{1}{2} \left([p \Xi_{cc}^{+}] + [\Xi_{cc}^{+} p] - [n \Xi_{cc}^{++}] - [\Xi_{cc}^{++} n] \right) \end{split}$$

Analyses and Result

• Coupled with $\Xi_{cc}N$

Cross-correlation matrix

$$\widetilde{\mathcal{C}}_{ij}(\vec{P},t) = \mathcal{C}_{ij}(\vec{P},t) / \sqrt{|\mathcal{C}_{ii}(\vec{P},t)\mathcal{C}_{jj}(\vec{P},t)|}$$

- The coupling between $\Xi_{cc}N$ and $\Lambda_c\Lambda_c$ is quite small.
- $\Lambda_c \Lambda_c$ energy levels haven't been shifted obviously.

Analyses and Result

• Coupled with $\Sigma_c \Sigma_c$

Shift is slight too, except the highest one.

Analyses and Result

- Single channel analysis
 - Dispersion relation check

$$E^2(k) = m^2 + Z_{cont.}p^2$$

• Modified Lüscher formula

$$\mathcal{M}_{00}(\tilde{q}^2) = \frac{2}{\sqrt{\pi L}} Z_{00}(1; \tilde{q}^2) \times \frac{E_1 + E_2}{Z_1 E_2 + Z_2 E_1}$$

• Repulsive interaction

11/13

• Phase shift and scattering length

• Repulsive interaction

12/13

- Due to the **discretization** on lattice, a **modification on Lüscher equat**ion is proposed in this work.
- Coupled with $\Xi_{cc}N$ or $\Sigma_c\Sigma_c$, the energy levels of $\Lambda_c\Lambda_c$ haven't been shifted obviously. Therefore, **single channel** is contained.
- Showing a **repulsive interaction**, there's **no bound state** in this system.
- Scattering length $a_0 = -0.143(49)$ fm.

Thanks!

Back-up

• Effective mass in various cases

(a) Diagonal elements of $\Lambda_c \Lambda_c$ correlation matrix(red, orange, purple, brown)

- (b) Single channel $\Lambda_c \Lambda_c$ with GEVP
- (c) Coupled with $\Xi_{cc}N$ (blue and blue) with GEVP
- (d) Coupled with $\Sigma_c \Sigma_c$ (green) with GEVP
- (e) The same as (a) with Nev=200, added in higher momentum(pink).

• Overlap factors[J. J. Dudek et al, 1004.4930]

$$Z_{i}^{\alpha} \equiv \langle \alpha | \phi_{i} | 0 \rangle = \sqrt{2E_{\alpha}} e^{\frac{E_{\alpha}t_{0}}{2}} v_{j}^{\alpha*} \mathcal{C}_{ji}(t_{0})$$

Red ones belong to $\Lambda_c \Lambda_c$, while green one belongs to $\Sigma_c \Sigma_c$ and blue ones belong to $\Xi_{cc} N$ Black box represents the ground state of $\Lambda_c \Lambda_c$.

• Correlation function fitting details

Correlation function of Single Λ_c then can be fitted as the parametrization

 $\mathcal{C}(t) = A \exp\left[-M_{eff}t\right]$

- Fitting window is [t_{start}, t_{end}] while t_{end} is fixed.
- Starting time-slice should given a stable fitting result.
- Fitting window should be as wide as possible.

The left-hand cut gives the limit of pole extraction with $k^2 = -\frac{m_{\omega}^2}{4}$ from the exchanging of omega boson.

[X.-K. Dong et al, Phys.Rev.D 105 (2022) 7, 074506] [Also see talk in Aug 1st 11:30 and 11:50 in LT1]

- Finite volume effect
 - The scattering length are consistent in the two ensembles.
 - However, there's a little difference.

