

Doubly Charmed $\Lambda_c \Lambda_c$ **Scattering from Lattice QCD**

Yiqi Geng

Institute of Morden Physics, and Nanjing Normal U.

Collaborators: Liuming Liu, Peng Sun, Jia-Jun Wu, Hanyang Xing, Zhicheng Yan, Ruilin Zhu

yqgeng@njnu.edu.cn liuming@impcas.ac.cn sunpeng19820124@gmail.com wujiajun@ucas.ac.cn

41st Lattice Conference, July 30th , 2024, University of Liverpool

Outline

- Motivation
- Lattice Setup
- Calculation Methodology
- Analyses and Result
- Summary

⚫ Recently, many charmed exotic states beyond conventional quark model were found in experiments. Such as T_{cc}^+ which can be explained well on Lattice.

[see talks given at LT1 room, 29th afternoon]

- ⚫ Study of Baryon-Baryon interaction have many challenges on Lattice.
- Deuteron bound state haven't been confirmed in the lattice calculation.

[Saman Amarasinghe et al. PRD 107 (2023) 9, 094508]

• The same with $ΛΛ$ system, which is also known as H dibaryon.

[Kenji Sasaki et al. Nucl.Phys.A 998 (2020) 121737]

[Jeremy R. Green et al. PRL. 127 (2021) 24, 242003]

What about $\Lambda_c \Lambda_c$ **?**

Lattice Setup

[Z.C. Hu et al. PRD 109 (2024) 5, 054507]

- Two Wilson-Clover lattice ensembles are used in this work.
- They are space-time symmetrical and 2+1 flavor.
- The same pion mass and lattice spacing, but different volume.

• Mass of particles/MeV

• Energy levels of thresholds /MeV

● Lüscher's finite volume method [M. Lüscher, Nucl. Phys. B. 354 (1991) 531-578]

$\det[1 + i\rho T(1 + i\mathcal{M})] = 0$

• $\rho \sim$ phase space • $T \sim$ scattering amplitude • $\mathcal{M} \sim$ Lüscher matrix

• For S wave spin-zero case:
$$
\mathcal{M}_{00}(\tilde{q}^2) = \frac{2}{\sqrt{\pi L}} Z_{00}(1; \tilde{q}^2)
$$

[see talk: LT1 room, 29th 11:35 given by Nelson Pitanga Lachini]

- ⚫ **Distillation quark smearing method [Michael Peardon et al, PRD 80 (2009) 054506]**
	- Improve precision Efficient for large numbers of operations

[see talks given at LT1 room, 30th morning]

⚫ **Operator construction**

• Single baryon

$$
B(k, x^0) = \sum_{\vec{x}} P_+ \varepsilon_{abc} r_{ax} \left[s_{bx}^T (C\gamma_5) t_{cx} \right] e^{-i\vec{k}\cdot\vec{x}}
$$

$$
\mathcal{O}_{B_1B_2}^{\Lambda}(|\vec{k}|) = \sum_j c_j^{\Lambda} B_1^T(|\vec{k}|) C\gamma_5 B_2(-|\vec{k}|)
$$

⚫ **Correlation function**

• Two baryons

 $C(t) = \langle O(t) O^{\dagger}(0) \rangle \approx A e^{-E t}$

 $\overline{}$

- **Generalized eigenvalue problem(GEVP)** $C(t)v_{\alpha}(t,t_0) = \lambda_{\alpha}(t,t_0)C(t_0)v_{\alpha}(t,t_0)$
	- Eigenvalue $\lambda_{\alpha}(t, t_0) \sim e^{-E_{\alpha}(t-t_0)}$

● Energy Fitting Method

Since these energy levels are quite close to their corresponding free energies, a ratio form fitting could perform better

$$
C_R(t) = \frac{C_{BB}(t)}{C_{thre.}(t)} \simeq Ae^{-(E_{BB}-2m_{\Lambda_c})t} = Ae^{-\Delta E t}
$$

⚫ Couple channels

To explore the states near $\Lambda_c \Lambda_c$ 0(0⁺) threshold, three channels are taken into consideration in A_1^+ irrep, i.e. $\Xi_{cc} N$, $\Lambda_c \Lambda_c$ and $\Sigma_c \Sigma_c$.

- single baryon Λ_c 0 $\left(\frac{1}{2}\right)$ $\overline{\mathbf{2}}$ + , Σ_c 1 $\left(\frac{1}{2}\right)$ $\mathbf{2}$ + , \mathcal{Z}_{cc} and $N\frac{1}{2}$ $\mathbf{2}$ $\mathbf{1}$ $\overline{\mathbf{2}}$ +
- two baryons

$$
\Lambda_c \Lambda_c^{I=0} = [\Lambda_c \Lambda_c]
$$

\n
$$
\Sigma_c \Sigma_c^{I=0} = \frac{1}{\sqrt{3}} ([\Sigma_c^{++} \Sigma_c^0] - [\Sigma_c^+ \Sigma_c^+] + [\Sigma_c^{++} \Sigma_c^0])
$$

\n
$$
\Xi_{cc} N^{I=0} = \frac{1}{2} ([p \Xi_{cc}^+] + [\Xi_{cc}^+ p] - [n \Xi_{cc}^{++}] - [\Xi_{cc}^{++} n])
$$

Analyses and Result

Coupled with $E_{cc}N$

Cross-correlation matrix

$$
\widetilde{\mathcal{C}}_{ij}(\vec{P},t) = \mathcal{C}_{ij}(\vec{P},t) / \sqrt{|\mathcal{C}_{ii}(\vec{P},t)\mathcal{C}_{jj}(\vec{P},t)|}
$$

- The coupling between $\Xi_{cc}N$ and $\Lambda_c\Lambda_c$ is quite small.
- $\Lambda_c \Lambda_c$ energy levels haven't been shifted obviously.

Analyses and Result

Coupled with $\Sigma_c \Sigma_c$

Shift is slight too, except the highest one.

10 /13

Analyses and Result

- Single channel analysis
	- Dispersion relation check

$$
E^2(k) = m^2 + Z_{cont.}p^2
$$

• Modified Lüscher formula

$$
\mathcal{M}_{00}(\tilde{q}^2) = \frac{2}{\sqrt{\pi L}} Z_{00}(1; \tilde{q}^2) \times \frac{E_1 + E_2}{Z_1 E_2 + Z_2 E_1}
$$

• Repulsive interaction

11 /13

⚫ Phase shift and scattering length

• Repulsive interaction

12 /13

- Due to the **discretization** on lattice, a **modification on Lüscher equation** is proposed in this work.
- Coupled with $\Xi_{cc}N$ or $\Sigma_c\Sigma_c$, the energy levels of $\Lambda_c\Lambda_c$ haven't been shifted obviously. Therefore, **single channel** is contained.
- Showing a **repulsive interaction,** there's **no bound state** in this system.
- Scattering length $a_0 = -0.143(49)$ fm.

Thanks!

Back-up

⚫ Effective mass in various cases

(a) Diagonal elements of $\Lambda_c \Lambda_c$ correlation matrix(red, orange, purple, brown)

- (b) Single channel $\Lambda_c \Lambda_c$ with GEVP
- (c) Coupled with $\Xi_{cc}N$ (blue and blue) with GEVP
- (d) Coupled with $\Sigma_c \Sigma_c$ (green) with GEVP
- (e) The same as (a) with Nev=200, added in higher momentum(pink).

⚫ Overlap factors**[J. J. Dudek et al, 1004.4930]**

$$
Z_i^{\alpha} \equiv \langle \alpha | \phi_i | 0 \rangle = \sqrt{2E_{\alpha}} e^{\frac{E_{\alpha}t_0}{2}} v_j^{\alpha*} C_{ji}(t_0)
$$

Red ones belong to $\Lambda_c \Lambda_c$, while green one belongs to $\Sigma_c \Sigma_c$ and blue ones belong to $\Xi_{cc} N$ Black box represents the ground state of $\Lambda_c \Lambda_c$.

● Correlation function fitting details

Correlation function of Single Λ_c then can be fitted as the parametrization

 $C(t) = A \exp[-M_{eff}t]$

- Fitting window is $[t_{start}, t_{end}]$ while t_{end} is fixed.
- Starting time-slice should given a stable fitting result.
- Fitting window should be as wide as possible.

● Left-hand cut

The left-hand cut gives the limit of pole extraction with $k^2 = -\frac{m_\omega^2}{4}$ 4 from the exchanging of omega boson.

> [X.-K. Dong et al, Phys.Rev.D 105 (2022) 7, 074506] [Also see talk in Aug 1^{st} 11:30 and 11:50 in LT1]

- ⚫ Finite volume effect
	- The scattering length are consistent in the two ensembles.
	- However, there's a little difference.

