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Mass spectra of gauge theories
motivation: numerically investigate low-energy spectra 
                   of confining gauge theories 

😊 Lattice QCD can predict the hadron mass spectrum 

😣 Theories with chemical potential or θ term 
    are inaccessible due to the sign problem 

Tensor network and quantum computing 
in the Hamiltonian formalism can be complementary approaches! 

👍 free from the sign problem      👍 analyze excited states directly
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aim of this work: 
compute the hadron mass spectrum in the Hamiltonian formalism

[HAL QCD collab. (2024)]



“Mesons” in 2-flavor Schwinger model
Schwinger model = QED in 1+1d 

• the simplest nontrivial gauge theory sharing some features with QCD 

 

• quantum numbers: 
  isospin ,  parity ,  G-parity  

•  and  are explicitly broken at ,  
̶> η becomes unstable 
      due to η→ππ decay and η-σ mixing

ℒ = −
1

4g2
FμνFμν +

θ
4π

ϵμνFμν +
Nf

∑
f=1

[iψ̄f γμ (∂μ + iAμ) ψf − mψ̄f ψf]

J P G = CeiπJy

P G θ ≠ 0
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“mesons” 
 :   

 :   

            :  

π = − i (ψ̄1γ5ψ1 − ψ̄2γ5ψ2) JPG = 1−+

η = − i (ψ̄1γ5ψ1 + ψ̄2γ5ψ2) JPG = 0−−

σ = ψ̄1ψ1 + ψ̄2ψ2 JPG = 0++

sign problem if θ ≠ 0



Short summary
• JHEP11 (2023) 231 [2307.16655]: 
  demonstrated three distinct methods to compute the mass spectrum at  

(1) correlation-function scheme 

(2) one-point-function scheme 

(3) dispersion-relation scheme 

• [2407.11391]: improve and extend them to the case of  

(1)+(2) improved one-point-function scheme  

(3) dispersion-relation scheme 

• θ-dependent spectra by these schemes are  
consistent with each other and with calculation in the bosonized model

θ = 0

θ ≠ 0
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https://arxiv.org/abs/2307.16655
http://arxiv.org/abs/2407.11391


Calculation strategy
• setup: staggered fermion with open boundary 

   

• rewrite to the spin Hamiltonian 
by Jordan-Wigner transformation  
after solving Gauss law and gauge fixing 

• obtain ground state  and excited states  

as MPS by DMRG with 

H =
g2a
2

N−2

∑
n=0

(Ln +
θ

2π )
2

+
Nf

∑
f=1 [ −i

2a

N−2

∑
n=0

(χ†
f,nUn χf,n+1 − χ†

f,n+1U
†
n χf,n) + mlat

N−1

∑
n=0

(−1)n χ†
f,n χf,n]

|Ψ0⟩ |Ψℓ⟩

Hℓ = H + W
ℓ−1

∑
ℓ′￼=0

|Ψℓ′￼
⟩⟨Ψℓ′￼

|
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[Kogut & Susskind (1975)] 
[Dempsey et al. (2022)]

typical 
bond dim.

[Banuls et al. (2013)] C++ library of ITensor is used 
[Fishman et al. (2022)]

: levelℓ



Simulation results
1. Operator mixing 

2. Improved one-point-function scheme 

3. Dispersion-relation scheme
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Operator mixing
Resolve the θ-dependent operator mixing to define meson operators 

• diagonalize the correlation matrix 

e.g.) isosinglet sector 

 

 … rotation matrix with the mixing angle  

•define meson operators by 

( ⟨S(x) S(y)⟩c ⟨S(x) PS(y)⟩c

⟨PS(x) S(y)⟩c ⟨PS(x) PS(y)⟩c) = R(δ)T(⟨σ(x) σ(y)⟩c 0
0 ⟨η(x) η(y)⟩c) R(δ)

R(δ) = (cos δ −sin δ
sin δ cos δ ) δ

(σ(x)
η(x)) := R(δ)( S(x)

PS(x))
8

 S(x) ↔ ψ̄ψ(x)

PS(x) ↔ − iψ̄γ5ψ(x)



Result of mixing angle
• triplet sector:  
  trivial rotation  since there is no mixing partner with π 

• singlet sector:  
  due to the nontrivial η-σ mixing 

• The result of  can be fitted  
by the function obtained  
from the bosonized model

δ− ≈ θ/2

exp [i(θ/2)γ5]

δ+ ≈ θ/2 + ω(θ)

δ+
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Improved one-point-function scheme
•We attach “the wings” to the lattice to control the boundary condition flexibly 

  e.g.) Dirichlet b.c. …  

•Regarding the boundary as the source of mesons (~wall source),  
measure the bulk one-point function: 

mwings ≫ m

⟨𝒪(x)⟩ ∼ exp(−Mx)
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small mass large masslarge mass

𝒪(x)



Result of sigma and eta mesons
• For the singlet mesons, we set the Dirichlet b.c. with  

• Assuming ,  

we fit the effective mass by  to obtain 

mwings = m0 ≫ m

⟨σ(x)⟩ ∼ Ae−Mx + Be−(M+ΔM)x

M +
ΔM

1 + CeΔMx
M
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eta meson: 
unstable at θ≠ 0

sigma meson: 
 stable at any θ effective mass

,  m = 0.1 m0 = 10



Result of pion
⚠  for the Dirichlet b.c. since such a boundary is isospin singlet 

• We apply a flavor-asymmetric twist  in the wings 
to induce the isospin-breaking effect

⟨π(x)⟩ = 0

mwings = m0 exp(±iΔγ5)
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pion effective mass
summary

,  m = 0.1 m0 = 10



One-point functions at θ=π
• the model is nearly conformal at θ=π 
̶> one-point functions are no longer exponential type 

• We compare them with the calculation in the WZW model 

 (Dirichlet b.c.),     (isospin-breaking b.c.)⟨σ(x)⟩ ∝
1

sin(πx/L)
⟨π(x)⟩ ∝

sin[Δ(1 − 2x/L)]
sin(πx/L)
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sigma meson 
at θ=π

pion 
at θ=π



Simulation results
1. Operator mixing 

2. Improved one-point-function scheme 

3. Dispersion-relation scheme
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Dispersion-relation scheme
• measure the energy gap  and momentum square  

• identify the meson states by the isospin  

• singlet projection to obtain σ efficiently:  

ΔEℓ = Eℓ − E0 ΔK2
ℓ = ⟨K2⟩ℓ − ⟨K2⟩0

(J2, Jz)

Hℓ = H + W
ℓ−1

∑
ℓ′￼=0

|Ψℓ′￼
⟩⟨Ψℓ′￼

|+WJJ2
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momentum2

triplets →π 
singlets →σ



Result of dispersion relation

• plot  against  and fit the data by  for each mesonΔEℓ ΔK2
ℓ ΔE = b2ΔK2 + M2
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energy vs momentum2 Around , σ is 
contaminated by a remnant 
of η due to the mixing

θ/2π = 0.2

summary



Summary
• The two schemes give consistent results and look promising 

• consistent with predictions by the bosonization 
        Mπ(θ) ∝ |cos(θ/2) |2/3 Mσ(θ)/Mπ(θ) = 3
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[Coleman (1976)] 
[Dashen et al. (1975)]

Monte Carlo (reweighting) 
[Fukaya & Onogi (2003)]

calculation, we approximate the integral of Ssubtr
N (!!,m) by

the trapezoidal rule for the discrete set of !! points, but this
does not seem to be the reason for the large fluctuation in the
"/(2#)!0.5 region. The main nonperturbative contribution
comes from DetN and Ssubtr

N (!!,m) gives only perturbative
effects of order !!"2.
We suspect that this large fluctuation is an example of the

well-known phase problem. Simply increasing the statistics
might not improve the situation.
Of course in application to QCD, it will be important to

evaluate Ssubtr
N (!!,m) and other observables more precisely.

B. ! meson correlator and U„1… problem
As the final subject, we would like to present the result of

our exploratory measurement of the $ meson mass in order
to study the topological structure. The $ propagator consists
of two parts:

%$$&#"2 ! tr" '3
1
D '3

1
D # $ $4 ! tr" '3

1
D # tr" '3

1
D # $ ,

(36)

where the first term is the same as the flavor nonsinglet #
propagator and the second term gives the ‘‘hair-pin’’ or dis-
connected contribution to the flavor singlet operator. Because
the number of physical space-time points is only 16%16, we
compute the ‘‘hair-pin’’ contribution by brute force, namely
by solving the fermion propagator for all points without re-
lying on the noise method *40+ or Kuramashi method *41+.
Figure 15 shows the contribution of the second term in

each sector, whereas Fig. 16 shows the full (symmetrized) $
propagator at m#0.2 and "#0. We also present effective
mass plot in Fig. 17. We find that the fall of $ propagator is
steeper than that of # which gives qualitatively consistent
results with the U(1) problem, although it suffers from both
the theoretical errors as well as the large statistical errors
making quantitative studies difficult. One of the major
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FIG. 14. " dependence of the pion mass at m#0.2. The open
symbols are the lattice data. The dashed line is the analytical result
of the " dependence in the continuum theory, where the normaliza-
tion is fitted by the lattice results. For "/(2#)&0.5, the pion mass
is proportional to cos("/2)2/3, which is in complete agreement with
the continuum results.
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FIG. 15. The propagator of $ in each sector at m#0.2.
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FIG. 16. The full propagator $ at m#0.2 and "#0 (closed
squares). The pion propagator is also plotted for comparison (open
circles). The propagators are normalized by the value at x#1.
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FIG. 17. The effective mass plot of the full $ propagator for
m#0.2, "#0. The dashed line shows the fit result.

LATTICE STUDY OF THE MASSIVE SCHWINGER . . . PHYSICAL REVIEW D 68, 074503 (2003)

074503-9

The sign problem is circumvented!

our work (DMRG)



Future prospect
• Extension to 2+1 dimensions, where the gauge field is dynamical 

• Application to the model with chemical potential: 
How the spectrum changes in the high-density region? 

• Analyses using the wave functions of the excited states: 
scattering problem, entanglement property, etc.
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Thank you for listening.
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Discussion
(1)correlation-function scheme 
   👍 generic method applicable to any case / off-diagonal elements 
   😥 sensitive to the bond dimension of MPS ̶> 😊 quantum computation? 

(2)one-point-function scheme 
   👍 NOT sensitive to the bond dimension / easy to compute 
   😥 only the lowest state of the same quantum number as the boundary 

(3)dispersion-relation scheme 
   👍 obtain various states heuristically / directly see wave functions 
   😥 how to generate excited states efficiently?
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Hamiltonian formalism
• Hamiltonian is written only by fermionic operators 

 

• Jordan-Wigner transformation: fermion operator ̶> spin operator 

       

       

• useful to apply the tensor network method or quantum computation

H =
g2a
2

N−2

∑
n=0

Nf

∑
f=1

n

∑
k=0

χ†
f,k χf,k +

Nf

2 ( (−1)n − 1
2

− n) +
θ

2π

2

+
Nf

∑
f=1 [ −i

2a

N−2

∑
n=0

(χ†
f,n χf,n+1 − χ†

f,n+1χf,n) + mlat

N−1

∑
n=0

(−1)n χ†
f,n χf,n]

χ1,n = σ−
1,n

n−1

∏
j=0

(−σz
2,jσ

z
1,j) χ2,n = σ−

2,n(−iσz
1,n)

n−1

∏
j=0

(−σz
2,jσ

z
1,j)

σ±
f,n =

1
2

(σx
f,n ± iσy

f,n) [σa
f,n, σb

f′￼,n′￼] = 2i δff′￼
δnn′￼

ϵabc σc
f,n
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Hamiltonian formalism
• spin Hamiltonian:  

   

   

   

• We compute eigenstates of this Hamiltonian by the tensor network method

H = Hgauge + Hkin + Hmass

Hgauge =
g2a
8

N−2

∑
n=0

Nf

∑
f=1

n

∑
k=0

σz
f,k + Nf

(−1)n + 1
2

+
θ
π

2

Hkin =
−i
2a

N−2

∑
n=0

(σ+
1,nσ

z
2,nσ

−
1,n+1 − σ−

1,nσz
2,nσ

+
1,n+1 + σ+

2,nσ
z
1,n+1σ

−
2,n+1 − σ−

2,nσz
1,n+1σ

+
2,n+1)

Hmass =
mlat

2

Nf

∑
f=1

N−1

∑
n=0

(−1)nσz
f,n +

mlat

2
Nf

1 − (−1)N

2
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Correlation-function sheme

• spatial 2-point correlation function:       

• effective mass:   

• 1/r behavior is observed only when the bond dim. is large 

• mass is given by  extrapolation 

Cπ(r) = ⟨π(x)π(y)⟩ ∼
1
rα

e−Mr r = |x − y |

Mπ,eff(r) = −
d
dr

log Cπ(r) ∼
α
r

+ M

r → ∞

24



Momentum projection
• correlation function 

• 1pt function around the boundary

25

Euclidean space

Euclidean space

x

τ

⟨0 |𝒪(x, τ)𝒪(y, τ) |0⟩

⟨bdry |𝒪(x, τ) |0⟩ ∼ ∫ dτ⟨0 |𝒪(0,τ)𝒪(x, τ) |0⟩



Mixing angle

singlet sector:  

• In the bosonized model,  
 is given by the argument of   

which diagonalizes the mass matrix 

 

δ+ ≈ θ/2 + ω(θ)

ω(θ) R

ℳ ∝ ( 1 A sin(θ/2) |cos(θ/2) |1/3

A sin(θ/2) |cos(θ/2) |1/3 B |cos(θ/2) |4/3 ) = R(ω(θ))TΛ R(ω(θ))

R(ω) = (cos ω −sin ω
sin ω cos ω )
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fitting result 
, A = − 0.23(2) B = 0.76(4)



Isospin quantum numbers
• isospin operators: conserved charge of SU(2) isospin symmetry 

       

• lattice version 

,    ,     

• They exactly commute with the lattice Hamiltonian. 

Ja =
1
2 ∫ dx∑

f, f′￼

ψ†
f (σa)f, f′￼

ψf′￼
a ∈ {x, y, z}

Jz =
1
2

N−1

∑
n=0

(χ†
1,n χ1,n − χ†

2,n χ2,n) J+ =
N−1

∑
n=0

χ†
1,n χ2,n = (J−)† J2 =

1
2

(J+J− + J+J−) + J2
z

[H, Jz] = [H, J±] = [H, J2] = 0
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Charge conjugation
• charge conjugation: exchange particles/anti-particles 
  = exchange even/odd sites and flip each spin 
  = 1-site translation and  operator 

   

       ̶> 

 due to the boundary 

• G-parity:  acting on the whole multiplet

σx

C :=
Nf

∏
f=1 (

N−1

∏
n=0

σx
f,n) (

N−2

∏
n=0

(SWAP)f;N−2−n,N−1−n)
(SWAP)f;j,k =

1
2 (1f,j1f,k + ∑

a

σa
f,jσ

a
f,k)

[H, C] ≠ 0

G = C exp(iπJy)

0 1 2 3 4 5

0 1 2 3 45

j k

k j

1-site translation
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