Computing theta-dependent mass spectrum of the 2-flavor Schwinger model in the Hamiltonian formalism

- Akira Matsumoto (YITP, Kyoto U, RIKEN iTHEMS)
	- collaboration with
- Etsuko Itou (YITP, Kyoto U, RIKEN iTHEMS) and Yuya Tanizaki (YITP, Kyoto U)
	- JHEP11 (2023) 231 [\[2307.16655](https://arxiv.org/abs/2307.16655)] and [\[2407.11391](http://arxiv.org/abs/2407.11391)]
	- LATTICE 2024, 30 July 2024 @University of Liverpool

2022/09/04 21:18 iTHEMS.svg

Mass spectra of gauge theories

- motivation: numerically investigate low-energy spectra of confining gauge theories
	- \bullet Lattice QCD can predict the hadron mass spectrum
	- \odot Theories with chemical potential or θ term are inaccessible due to the sign problem
- Tensor network and quantum computing in the Hamiltonian formalism can be complementary approaches!
	- \triangle free from the sign problem \triangle analyze excited states directly

aim of this work:

compute the hadron mass spectrum in the Hamiltonian formalism

"Mesons" in 2-flavor Schwinger model

$Schwinger model = QED in $1+1d$$

• the simplest nontrivial gauge theory sharing some features with QCD

• quantum numbers:

 \int *J*, parity *P*, G-parity $G = Ce^{i\pi J_y}$

• *P* and *G* are explicitly broken at $\theta \neq 0$,

 \rightarrow η becomes unstable due to $\eta \rightarrow \pi \pi$ decay and η -σ mixing

"mesons"

$$
\mathcal{L} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{4\pi} \epsilon_{\mu\nu} F^{\mu\nu} + \sum_{f=1}^{N_f} \left[i \bar{\psi}_f \gamma^\mu \left(\partial_\mu + i A_\mu \right) \psi_f - m \bar{\psi}_f \psi_f \right] \qquad \text{sign problem if } \theta \neq 0
$$

$$
\pi = -i \left(\bar{\psi}_1 \gamma^5 \psi_1 - \bar{\psi}_2 \gamma^5 \psi_2 \right) : J^{PG} = 1^{-+}
$$

$$
\eta = -i \left(\bar{\psi}_1 \gamma^5 \psi_1 + \bar{\psi}_2 \gamma^5 \psi_2 \right) : J^{PG} = 0^{--}
$$

$$
\sigma = \bar{\psi}_1 \psi_1 + \bar{\psi}_2 \psi_2 \qquad \qquad : J^{PG} = 0^{++}
$$

Short summary

- JHEP11 (2023) 231 [<u>2307.16655</u>]:
	- (1) correlation-function scheme
	- (2) one-point-function scheme
	- (3) dispersion-relation scheme
- $[2407.11391]$ $[2407.11391]$ $[2407.11391]$: improve and extend them to the case of $\theta \neq 0$ (1)+(2) improved one-point-function scheme (3) dispersion-relation scheme
- \cdot θ -dependent spectra by these schemes are consistent with each other and with calculation in the bosonized model

demonstrated three distinct methods to compute the mass spectrum at $\theta = 0$

Calculation strategy

setup: staggered fermion with open boundary

$$
H = \frac{g^2 a}{2} \sum_{n=0}^{N-2} \left(L_n + \frac{\theta}{2\pi} \right)^2 + \sum_{f=1}^{N_f} \left[\frac{-i}{2a} \sum_{n=0}^{N-2} \left(\chi_{f,n}^{\dagger} U_n \chi_{f,n+1} - \chi_{f,n+1}^{\dagger} U_n^{\dagger} \chi_{f,n} \right) + m_{\text{lat}} \sum_{n=0}^{N-1} (-1)^n \chi_{f,n}^{\dagger} \chi_{f,n} \right]
$$

- rewrite to the spin Hamiltonian by Jordan-Wigner transformation after solving Gauss law and gauge fixing
- obtain ground state $|\Psi_0\rangle$ and excited states $|\Psi_e\rangle$

as MPS by DMRG with $H_e = H + W$ *ℓ*−1 ∑ ℓ' = 0

|Ψ*ℓ*′ ⟩⟨Ψ*ℓ*′ |

[Kogut & Susskind (1975)] [Dempsey et al. (2022)]

[Banuls et al. (2013)] C++ library of ITensor is used [Fishman et al. (2022)]

ℓ: level

Simulation results

- 1. Operator mixing
- 2. Improved one-point-function scheme
- 3. Dispersion-relation scheme

Simulation results

- 1. Operator mixing
- 2. Improved one-point-function scheme
- 3. Dispersion-relation scheme

Operator mixing

Resolve the θ -dependent operator mixing to define meson operators

• define meson operators by $\sqrt{2}$ *σ*(*x*) $\eta(x)$:= $R(\delta)$

• diagonalize the correlation matrix e.g.) isosinglet sector

 $\sqrt{2}$ $\langle S(x) S(y) \rangle_c$ $\langle S(x) PS(y) \rangle_c$ $\langle PS(x) S(y) \rangle_c$ $\langle PS(x) PS(y) \rangle_c$ $= R(\delta)^{\mathrm{T}}$ $\sqrt{2}$

 $R(\delta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \delta & \cos \delta \end{pmatrix}$ \cdots rotation matrix with the mixing angle $\cos \delta$ −sin δ $\sin \delta$ $\cos \delta$) \cdots rotation matrix with the mixing angle δ

$$
\langle \sigma(x) \sigma(y) \rangle_c
$$
 0
\n $\langle \eta(x) \eta(y) \rangle_c$ $\langle R(\delta) \rangle$ $S(x) \leftrightarrow \bar{\psi}\psi(x)$
\n $PS(x) \leftrightarrow -i\bar{\psi}\gamma^5\psi$

$$
R(\delta)\begin{pmatrix}S(x)\\PS(x)\end{pmatrix}
$$

Result of mixing angle

- triplet sector: *δ*[−] ≈ *θ*/2
	- trivial rotation $\exp\left[i(\theta/2)\gamma^5\right]$ since there is no mixing partner with π
- δ . singlet sector: $\delta_+ \approx \theta/2 + \omega(\theta)$ due to the nontrivial η - σ mixing
- . The result of δ_+ can be fitted by the function obtained from the bosonized model

Simulation results

1. Operator mixing

2. Improved one-point-function scheme

3. Dispersion-relation scheme

Improved one-point-function scheme

•Regarding the boundary as the source of mesons (~wall source), measure the bulk one-point function: $\langle O(x) \rangle \sim \exp(-Mx)$

•We attach "the wings" to the lattice to control the boundary condition flexibly

e.g.) Dirichlet b.c. \cdots $m_{\text{wings}} \gg m$

Result of sigma and eta mesons

- . For the singlet mesons, we set the Dirichlet b.c. with $m_{\text{wings}} = m_0 \gg m$
- \sim Assuming $\langle \sigma(x) \rangle \sim Ae^{-Mx} + Be^{-(M+\Delta M)x}$,

we fit the effective mass by $M + \frac{M}{1 + M}$ to obtain

Δ*M* $1 + Ce^{\Delta Mx}$ *M*

 $m = 0.1$, $m_0 = 10$

Result of pion

- $\langle \mathbf{r}(x) \rangle = 0$ for the Dirichlet b.c. since such a boundary is isospin singlet
- **.** We apply a flavor-asymmetric twist $m_{\text{wings}} = m_0 \exp(\pm i \Delta \gamma^5)$ in the wings to induce the isospin-breaking effect

One-point functions at $\theta = \pi$

- the model is nearly conformal at $\theta = \pi$ ̶> one-point functions are no longer exponential type
- We compare them with the calculation in the WZW model

$$
\langle \sigma(x) \rangle \propto \frac{1}{\sqrt{\sin(\pi x/L)}} \text{ (Dirichlet b.c.),} \quad \langle \pi \rangle
$$

$\langle \sigma(x) \rangle \propto \frac{1}{\sqrt{1-\sigma^2}}$ (Dirichlet b.c.), $\langle \pi(x) \rangle \propto \frac{\sin[\Delta(1-2x/L)]}{\sqrt{1-\sigma^2}}$ (isospin-breaking b.c.) $\sin[\Delta(1-2x/L)]$ $\sin(\pi x/L)$

Simulation results

- 1. Operator mixing
- 2. Improved one-point-function scheme
- 3. Dispersion-relation scheme

Dispersion-relation scheme

-
-

Result of dispersion relation

• plot ΔE_e against ΔK_e^2 and fit the data by $\Delta E = \sqrt{b^2 \Delta K^2 + M^2}$ for each meson

energy vs momentum²

0.8

0.6

Summary

- The two schemes give consistent results and look promising
- consistent with predictions by the bosonization $M_{\pi}(\theta) \propto |\cos(\theta/2)|^{2/3}$ $M_{\sigma}(\theta)/M_{\pi}(\theta) = \sqrt{3}$

[Coleman (1976)] [Dashen et al. (1975)]

Future prospect

- Extension to 2+1 dimensions, where the gauge field is dynamical
- Application to the model with chemical potential: How the spectrum changes in the high-density region?
- Analyses using the wave functions of the excited states: scattering problem, entanglement property, etc.

Thank you for listening.

Discussion

(1)correlation-function scheme generic method applicable to any case / off-diagonal elements \odot sensitive to the bond dimension of MPS $\rightarrow \odot$ quantum computation?

(2)one-point-function scheme **A** NOT sensitive to the bond dimension / easy to compute \odot only the lowest state of the same quantum number as the boundary

(3)dispersion-relation scheme

de obtain various states heuristically / directly see wave functions \odot how to generate excited states efficiently?

Hamiltonian formalism

• Hamiltonian is written only by fermionic operators

• useful to apply the tensor network method or quantum computation

$$
H = \frac{g^2 a}{2} \sum_{n=0}^{N-2} \left[\sum_{f=1}^{N_f} \sum_{k=0}^n \chi_{f,k}^{\dagger} \chi_{f,k} + \frac{N_f}{2} \left(\frac{(-1)^n - 1}{2} - n \right) + \frac{\theta}{2\pi} \right]^2 + \sum_{f=1}^{N_f} \left[\frac{-i}{2a} \sum_{n=0}^{N-2} \left(\chi_{f,n}^{\dagger} \chi_{f,n+1} - \chi_{f,n+1}^{\dagger} \chi_{f,n} \right) + m_{\text{lat}} \sum_{n=0}^{N-1} (-1)^n \chi_{f,n}^{\dagger} \chi_{f,n} \right]^2
$$

• Jordan-Wigner transformation: fermion operator \rightarrow spin operator

$$
\chi_{1,n} = \sigma_{1,n}^{-1} \prod_{j=0}^{n-1} (-\sigma_{2,j}^{z} \sigma_{1,j}^{z}) \qquad \chi_{2,n} = \sigma_{2,n}^{-} (-i\sigma_{1,n}^{z}) \prod_{j=0}^{n-1} (-\sigma_{2,j}^{z} \sigma_{1,j}^{z})
$$

$$
\sigma_{f,n}^{\pm} = \frac{1}{2} (\sigma_{f,n}^x \pm i \sigma_{f,n}^y) \qquad \left[\sigma_{f,n}^a, \sigma_{f,n'}^b \right] = 2i \, \delta_{ff'} \, \delta_{nn'} \, \epsilon^{abc} \, \sigma_{f,n}^c
$$

Hamiltonian formalism

. spin Hamiltonian: $H = H_{\text{gauge}} + H_{\text{kin}} + H_{\text{mass}}$

• We compute eigenstates of this Hamiltonian by the tensor network method

$$
H_{\text{gauge}} = \frac{g^2 a}{8} \sum_{n=0}^{N-2} \left[\sum_{f=1}^{N_f} \sum_{k=0}^n \sigma_{f,k}^z + N_f \frac{(-1)^n + 1}{2} + \frac{\theta}{\pi} \right]^2
$$

\n
$$
H_{\text{kin}} = \frac{-i}{2a} \sum_{n=0}^{N-2} \left(\sigma_{1,n}^+ \sigma_{2,n}^z \sigma_{1,n+1}^- - \sigma_{1,n}^- \sigma_{2,n}^z \sigma_{1,n+1}^+ + \sigma_{2,n}^+ \sigma_{1,n+1}^z \sigma_{2,n+1}^- - \sigma_{2,n}^- \sigma_{1,n+1}^z \sigma_{2,n+1}^+ \right)
$$

\n
$$
H_{\text{mass}} = \frac{m_{\text{lat}}}{2} \sum_{f=1}^{N_f} \sum_{n=0}^{N-1} (-1)^n \sigma_{f,n}^z + \frac{m_{\text{lat}}}{2} N_f \frac{1 - (-1)^N}{2}
$$

Correlation-function sheme

- spatial 2-point correlation function:
- effective mass: $M_{\pi,\text{eff}}(r) = -\frac{d}{dr}$ *dr* $\log C_{\pi}(r) \sim$
- 1/r behavior is observed only when the bond dim. is large
- mass is given by $r \to \infty$ extrapolation

$$
C_{\pi}(r) = \langle \pi(x)\pi(y) \rangle \sim \frac{1}{r^{\alpha}}e^{-Mr} \qquad r = |x - y|
$$

$$
0 \sim \frac{\alpha}{r} + M
$$

Momentum projection

• correlation function

• 1pt function around the boundary

$\langle 0 | \mathcal{O}(x, \tau) \mathcal{O}(y, \tau) | 0 \rangle$

Mixing angle

singlet sector: $\delta_+ \approx \theta/2 + \omega(\theta)$

• In the bosonized model, $\omega(\theta)$ is given by the argument of R which diagonalizes the mass matrix

$$
\mathcal{M} \propto \begin{pmatrix} 1 & A \sin(\theta/2) |\cos(\theta/2)|^{1/3} \\ A \sin(\theta/2) |\cos(\theta/2)|^{1/3} & B |\cos(\theta/2)|^{4/3} \end{pmatrix} = R(\omega(\theta))^{\mathrm{T}} \Lambda R(\omega(\theta))
$$

$$
R(\omega) = \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix}
$$

$$
A = -0.23(2), B = 0.76(4)
$$

Isospin quantum numbers

• isospin operators: conserved charge of SU(2) isospin symmetry

• They exactly commute with the lattice Hamiltonian. $[H, J_z] = [H, J_{\pm}] = [H, \mathbf{J}^2] = 0$

• lattice version

$$
J_a = \frac{1}{2} \int dx \sum_{f,f'} \psi_f^{\dagger} (\sigma^a)_{f,f'} \psi_{f'} \qquad a \in \{x, y, z\}
$$

$$
J_z = \frac{1}{2} \sum_{n=0}^{N-1} \left(\chi_{1,n}^{\dagger} \chi_{1,n} - \chi_{2,n}^{\dagger} \chi_{2,n} \right), \quad J_+ = \sum_{n=0}^{N-1} \chi_{1,n}^{\dagger} \chi_{2,n} = (J_-)^{\dagger}, \quad \mathbf{J}^2 = \frac{1}{2} (J_+ J_- + J_+ J_-) + J_z^2
$$

Charge conjugation

• charge conjugation: exchange particles/anti-particles = exchange even/odd sites and flip each spin $=$ 1-site translation and σ^x operator

\int 0 1 2 3 4 5 5 0 1 2 3 4 j k k \sim j 1-site translation

$$
C := \prod_{f=1}^{N_f} \left(\prod_{n=0}^{N-1} \sigma_{f,n}^x \right) \left(\prod_{n=0}^{N-2} (\text{SWAP})_{f,N-2-n,N-1-n} \right)
$$

$$
(\text{SWAP})_{f,j,k} = \frac{1}{2} \left(\mathbf{1}_{f,j} \mathbf{1}_{f,k} + \sum_a \sigma_{f,j}^a \sigma_{f,k}^a \right) \longrightarrow
$$

 $[H, C] \neq 0$ due to the boundary

. G-parity: $G = C \exp(i\pi J_y)$ acting on the whole multiplet

