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Three of the key challenges for robust and reliable
quantum simulation of gauge theories

» State preparation of gauge theory Hamiltonian — why so challenging? What are
effective ways?

» Dealing with a large Hilbert space for gauge theories in contrast to quantum spins
= We choose to work with a matter-free non-Abelian SO(3) lattice gauge
theory in 2+1D
= We impose the non-Abelian Gauss Law in the Rishon representation of the
qguantum link operator
= Significantly reduces the degrees of freedom for gauge theories

» Sensitivity to errors and noise - an effective scheme for quantum error mitigation
(QEM) using symmetry constraints and post-selection.



Challenge 1: State preparation for gauge theories
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Classically emulated digital quantum simulation of the Schwinger model
with a topological term via adiabatic state preparation
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‘We designed a protocol for digital quantum computation of a gauge theory with a topological term in
Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We
focus on 1 + 1 dimensional quantum electrodynamics with the 8 term known as the Schwinger model and
test our protocol for this on an IBM simulator. We construct the true vacuum state of a lattice Schwinger
model using adiabatic state preparation which, in turn, allows us to compute an expectation value of the
fermion mass operator with respect to the vacuum. Upon taking a continuum limit we find that our result in
the massless case agrees with the known exact result. In the massive case, we find an agreement with mass
perturbation theory in the small-mass regime and deviations in the large-mass regime. We estimate
computational costs required to take a reasonable continuum limit. Our results imply that digital quantum
simulation appears a promising tool to explore nonperturbative aspects of gauge theories with real time and
topological terms.

DOI: 10.1103/PhysRevD.105.094503
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However, ASP requires unfeasibly large circuit

depth for near term Digital quantum computation

Adiabatic state preparation (ASP) for Schwinger Model
Hamiltonian with theta term in 1+1D
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More feasible State preparation methods for NISQ era

Variational quantum eigen solver Quantum Approximate Optimisation Algorithm
(VQE) (QAOA)
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Challenge 2: Large Hilbert space of gauge theories

Spontaneous symmetry breaking in an SO(3) non-Abelian lattice gauge theory with
quantum algorithms

We d emon St rate th e a bi I ity Of Va ri ati ona I Sandip Maiti ®,+2>* Debasish Banerjee ®,1:2: Bipasha Chakraborty ®,% ! and Emilie Huffman ©4:

1 Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
2 Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

a Igo rlt h m S a n d QAOA to p re pa re g ro u n d Sta tes 3School of Physics and Astronomy, University of Southampton, University Road, Southampton, UK.
4 Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
. H . (Dated: July 27, 2024)
and excited states in a matter free non-Abelian N S
imulation of various properties of quantum field theories are rapidly becoming a testing ground for
. . demonstrating the prowess of quantum algorithms. Preparation of groun§states, as well as various
S O ( 3 ) I a tt I C e ga u ge t h e O rl e S O n 2 + 1 D simple wave packets for demonstrating scattering phenomena are be@(tensively investigated.

In this work, we study the ability of quantum algorithms for px%h ion of ground states in a
matter-free non-Abelian SO(3) lattice gauge theory in a phase w%ﬁ e global charge conjugation
symmetry is spontaneously broken. This is challenging for tg easons: firstly, the necessity of
dealing with a large Hilbert space for gauge theories in con(éﬁ to quantum spins, and secondly,
the exponentially fast closing of the gap between the stat hich form the two ground states in an
infinite volume. We demonstrate how the exact impo n of the non-Abelian Gauss Law in the

141 H rishon representation of the quantum link operato ificantly reduces the degrees of freedom, and

Ad d It I O n a | |y’ We h a n d | e t h e eX p O n e nt I a | |y alleviates the first problem. Further, in the Gauss- Qiﬁresolved basis, symmetry-guided ansétze for
trial states can be used as the starting poinlt®f e quantum algorithms to prepare the two lowest

H states, solving the second hurdle. We also e experimental results from the quantum hardware,

d e C re a S I n g m a S S ga p d u e to t h e S p O nta n e O u S | y IonQ, when working on plaquettes wit oéqubits and before resolving the Gauss Law. Besides the
two significant theoretical steps, the expérimental results indicate the role of metrics, such as the

b rO ke n g | O b a | C h a rge CO nj u gat i O n Sy m m et r.y energy and the infidelity, to assess the obtained results.

SO(3) shares fundamental properties with QCD

Many groups have been working on Rico et. al., Annals Phys. 393, 466-483 (2018)
various gauge theories in 2+1D and 3+1D



An SO(3) Quantum Link Model

Model, symmetries and gauge invariant states:
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Choose a gauge invariant basis by

directly projectingonto G = 0

Rico et. al., Annals Phys. 393, 466-483 (2018)
D. Horn, Phys. Lett. 100B, 149 (1981)
Brower, Chandrasekharan, Wiese, Phys. Rev. D 60, 094502 (1999) °



An SO(3) Quantum Link Model (continued...)

N? + 2N Hermitian operators needed to represent fields —» SO(6) embedded algebra

—>  Simplest representation in terms of spin 1/2 bilinear operators
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Formation of gauge invariant states for four spins:
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An SO(3) Quantum Link Model (continued...)

N? + 2N Hermitian operators needed to represent fields —» SO(6) embedded algebra

—>  Simplest representation in terms of spin 1/2 bilinear operators
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Hamiltonian in gauge invariant basis

V3 4
Hiny = 492 H ( " - L) + i Charge conjugation symmetry is
e expected to break spontaneously
: H (i (03 — 1;) — ‘fgg) —> smallest energy gap decreases
i=y,w Exponentially with volume

—p to demonstrate with VQE and QAOA
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Variational quantum algorithms: VQE and VQD

—

VQE: Minimize the cost functions FE(6) = (¢(§)|H|¢(§)> to obtain ground state energy

Similarly, use VQD by enforcing orthogonality to all previous states

For k-th state:  p(@,) = (4b(67) | H|(63)) +ZBZ Y(Or)$(8:))

Choose P for first excited state to be AE + eAE and tune € to get closer to
the exact energy difference



Variational algorithms: VQE and VQD
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{We witness the discrete symmetry breaking > exponential decrease of mass gap with vqumeJ
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Variational algorithms: results
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Variational algorithms: results
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Quantum Adiabatic Algorithm and QAOA

Gauge invariant states of 4-spins on 2 x 2 lattice:
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Spontaneous symmetry breaking with VQE and QAOA
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We show that using VQE/VQD, and QAOA in a novel way spontaneous
symmetry breaking in SO(3) in 2+1D has been achieved

Next talk by Dr. Graham Van Goffrier — SO(3) on 2+1D with fermions



Third challenge: QEM via symmetry constraints and
post selection

» Imperfections in near-term quantum devices degrade the desired output information.
» A QEM protocol will aim to minimize this degradation.

» Although for scalability long term solution is QEC which needs fault tolerant qubits

» QEM is also feasible for NISQ era vs. QEC due to large overhead demand of QEC

One simple but effective QEM technique:
Use symmetry verification to identify errors that break the symmetries of the
ideal quantum state and remove them via post-selection [Gottesman 1997, Tehral 2015]
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QEM via symmetry constraints and post selection

Identify inherent symmetry of the circuit [H, S| = HS - SH =0 and S|‘Pj> — S|\11j>

» We chose Schwinger Model Hamiltonian in 1+1D to work with
» We chose a common symmetry : Parity [[,Z;
» We The input state, time evolution, output state — all should hold the symmetry ideally

Lets consider a Single Pauli symmetry operator S and where the ideal state lives within
the +1 eigenspace of S defined by the projector II = (1/2)(1 + S)

I1pIl
Post-selected state Psym = Tr[IIpI]]

Tr[OTIpIl]  Tr[Ogymp]
The symmetry-verified expectation value for Tr|Opgym| = Tr[llpl]  Tr|Ip)]

the target observable O is given by
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QEM implementation and outcome

Error-Mitigated Ground State, Depol. 0.000001, T = 1000
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Summary
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J A matter-free SO(3) gauge theory Hamiltonian in 2+1D e

has be written in gauge invariant basis using Quantum

Link Model, and the Hilbert space was heavily reduces o

* VQE
®  QAOA

d The spontaneous discrete symmetry breaking in SO(3) z
in 2+1D was established via quantum simulation é

d  Asimple but effective way of QEM is using symmetry »

constraints and post selection | Vel



