

DEPARTMENT OF PHYSICS

Scattering wave packets of hadrons in gauge theories: Preparation on a quantum computer

Chung-Chun Hsieh

with Prof. Zohreh Davoudi, Saurabh Kadam

Based on arXiv:2402.00840 [quant-ph]

Introduction

Photo credit: CERN

- Gauge theory
 - Standard model: $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - Strongly interacting (e.g. QCD at low energy): non-perturbative methods
 - Real-time processes hard for lattice QCD

Introduction

Photo credit: CERN

- Gauge theory
 - Standard model: $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - Strongly interacting (e.g. QCD at low energy): non-perturbative methods
 - Real-time processes hard for lattice QCD

• Hamiltonian formulation

 $\langle \widehat{\boldsymbol{O}}(\boldsymbol{t}) \rangle = \langle 0 | e^{iHt} \widehat{\boldsymbol{O}}(\boldsymbol{0}) e^{-iHt} | 0 \rangle$

- Exponential growth of Hilbert space
- Quantum simulation

 $|\psi\rangle = \cos(\theta/2) |0\rangle + e^{-i\phi} \sin(\theta/2) |1\rangle$

 $|\psi\rangle_1\otimes|\psi\rangle_2\otimes\cdots\otimes|\psi\rangle_N\sim 2^N$

Quantum simulation

• Quantum simulation protocol:

Quantum simulation

• Quantum simulation protocol:

Quantum simulation

• Quantum simulation protocol:

 Initial state for scattering: interacting wave packets, e.g.

Interacting momentum eigenstate

Wave-packet function

• State preparation can be challenging in quantum computing!

J. Kempe, A. Kitaev, O. Regev, FSTTCS 2004

JLP and alternatives

S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum algorithms for quantum field theories, Science 336, 1130 (2012)

- Jordan-Lee-Preskill:
 - Adiabatic activation of interaction
 - Resource intensive
 - Ineffective with phase transition, confinement

Quantum Algorithms for Quantum Field Theories

Stephen P. Jordan,¹* Keith S. M. Lee,² John Preskill³

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (ϕ^4 theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

Digital

Adiabatic

- S. P. Jordan, K. S. M. Lee, J. Preskill, arXiv:1404.7115 [hep-th]
- J. Barata, N. Mueller, A. Tarasov, and R. Venugopalan, PRA 103, 042410
- T.D. Cohen and H. Oh, arXiv:2310.19229 [hep-lat]

Phase shift

- E. Gustafson, Y. Zhu, P. Dreher, N. M. Linke, and Y. Meurice, Phys. Rev. D 104, 054507 (2021)
- S. Sharma, T. Papenbrock, and L. Platter, arXiv:2311.09298 [nucl-th]

LSZ reduction

- T. Li, W. K. Lai, E. Wang, and H. Xing, Phys. Rev. D 109, 036025 (2024)
- R. A. Briceno, R. G. Edwards, M. Eaton, C. Gonzalez-Arciniegas, O. Pfister, and G. Siopsis, arXiv:2312.12613 [quant-ph]

Optical theorem

A. Ciavarella, Phys. Rev. D 102, 094505 (2020)

Axiomatic QFT

- M. Turco, G. M. Quinta, J. Seixas, Y. Omar, PRX Quantum 5, 020311
- M. Kreshchuk, J. P. Vary, P. J. Love, arXiv:2310.13742 [quant-ph]

Fermionic excitation

• Y. Chai, A. Crippa, K. Jansen, S. Kuhn, V. R. Pascuzzi, F. Tacchino, and I. Tavernelli, arXiv:2312.02272 [quant-ph]

Adapt-VQE

 R. C. Farrell, M. Illa, A. N. Ciavarella, M. J. Savage, Phys. Rev. D 109, 114510 (2024)

Analog

Adiabatic

 A. N. Ciavarella, S. Caspar, M. Illa, M. J. Savage, Quantum 7, 970 (2023)

Non-Adiabatic

- F. M. Surace and A. Lerose, 2021 New J. Phys. 23 062001
- R. Belyansky, S. Whitsitt, N. Mueller, A. Fahimniya, E. R. Bennewitz, Z. Davoudi, A.V. Gorshkov, Phys. Rev. Lett. 132, 091903 (2024)

JLP and alternatives

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021)

JLP and alternatives

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021)

¹⁰

Outline

Introduction

Quantum algorithm and circuit

- Model: 1+1D Z₂ LGT coupled to fermions
- Ansatz for interacting wave-packet creation operator
- Quantum circuit
- Results
 - Hardware: Quantinuum H1-1
- Summary and Outlook

Quantum algorithm and circuit

Algorithm

1. Mapping the degrees of freedom to qubits

2. Prepare the interacting ground state

3. Optimize an ansatz for creation operator

4. Quantum circuit for the wave packets

Algorithm

The algorithm works with U(1) LGT.
 Only Z₂ is implemented on hardware due to resource limit

1. Mapping the degrees of freedom to qubits

2. Prepare the interacting ground state

3. Optimize an ansatz for creation operator

4. Quantum circuit for the wave packets

Algorithm: mapping to qubits

Algorithm: Ground state preparation

16

Variational Quantum

Eigensolver (VQE)

Algorithm: Ground state preparation

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021)

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021)

- VQE gives |k> (lowest energy other than ground state)
- Classical simulation of VQE in this work due to resource limit

For each momentum k:

$$b_k^{\dagger} = \sum_{p,q \in \widetilde{\Gamma}} \delta_{k-p-q} \eta(p,q) \mathcal{B}(p,q)$$

$$\boldsymbol{\eta}(\boldsymbol{p},\boldsymbol{q}) = N_{\eta} \exp\left(\frac{i(\boldsymbol{p}-\boldsymbol{q})\boldsymbol{\mu}_{\boldsymbol{k}}^{A}}{2}\right) \exp\left(\frac{-(\boldsymbol{p}-\boldsymbol{q})^{2}}{4\boldsymbol{\sigma}_{\boldsymbol{k}}^{A}}\right)$$

Optimize for lowest energy for each k ²¹

Algorithm: quantum circuit

$$\boldsymbol{b}_{\boldsymbol{\Psi}}^{\dagger} = \sum_{k} \boldsymbol{\Psi}(k) \boldsymbol{b}_{k}^{\dagger} = \sum_{m,n} \boldsymbol{C}_{m,n} \sigma_{m}^{-} \sigma_{n}^{+} \left(\prod_{l=m+1}^{n-1} \sigma_{l}^{z}\right) \left(\prod_{l=m}^{n-1} \tilde{\sigma}_{l}^{x}\right)$$
$$\mathbf{Optimized}(\boldsymbol{\mu}_{k}^{A}, \boldsymbol{\sigma}_{k}^{A}) \qquad \boldsymbol{\xi}_{m}^{\dagger} (\prod_{l=m}^{n-1} \tilde{\sigma}_{l}^{x}) \boldsymbol{\xi}_{n}$$

Algorithm: quantum circuit

$$\boldsymbol{b}_{\boldsymbol{\Psi}}^{\dagger} = \sum_{k} \Psi(k) \boldsymbol{b}_{k}^{\dagger} = \sum_{m,n} \boldsymbol{C}_{m,n} \sigma_{m}^{-} \sigma_{n}^{+} \left(\prod_{l=m+1}^{n-1} \sigma_{l}^{z} \right) \left(\prod_{l=m}^{n-1} \tilde{\sigma}_{l}^{x} \right)$$

Optimized $(\boldsymbol{\mu}_{k}^{A}, \boldsymbol{\sigma}_{k}^{A}) \qquad \xi_{m}^{\dagger} (\prod_{l=m}^{n-1} \tilde{\sigma}_{l}^{x}) \xi_{n}$

Technical issues and solutions

- Non-unitary operator b_{Ψ}^{\dagger}
 - Ancilla encoding
- Non-commuting summands in b_{ψ}^{\dagger}
 - Product formula (Trotterization) $e^{A+B} = \lim_{n \to \infty} (e^{A/n} e^{B/n})^n$
- Complicated multi-spin operator
 - Choose a better basis using Singular Value Decomposition (SVD) circuit

Z. Davoudi, A. F. Shaw, J. R. Stryker, Quantum 7, 1213 (2023)

Algorithm: quantum circuit

Results: Quantinuum H1-1

6 sites (12 + 1 qubits), $m_f = 1, \epsilon = -0.3$

$$\sigma=rac{\pi}{6}$$
 , $\mu=3$, $k_0=0$

$$\Psi(\mathbf{k}) = \mathcal{N}_{\Psi} \exp(-ik\boldsymbol{\mu}) \exp\left(\frac{-(k-\boldsymbol{k}_0)^2}{4\boldsymbol{\sigma}}\right)$$

• Exact optimized:

Assemble the optimized $|k\rangle$ classically according to the wave packet profile $\Psi(k)$

- Ideal circuit:
 Fine steps in product formula
 - **Truncated circuit:** Crude steps in product formula, only keep "important" mesons ($|C_{m,n}| > 0.1$)

Z₂ wavepacket results

6 sites (12 + 1 qubits), $m_f = 1, \epsilon = -0.3$

$$\sigma=rac{\pi}{6}$$
 , $\mu=3$, $k_0=0$

$$\Psi(\mathbf{k}) = \mathcal{N}_{\Psi} \exp(-ik\boldsymbol{\mu}) \exp\left(\frac{-(k-\boldsymbol{k_0})^2}{4\boldsymbol{\sigma}}\right)$$

• Exact optimized:

Assemble the optimized $|k\rangle$ classically according to the wave packet profile $\Psi(k)$

- Ideal circuit: Fine steps in product formula
 - **Truncated circuit:** Crude steps in product formula, only keep "important" mesons ($|C_{m,n}| > 0.1$)
- Quantinuum H1-1: 500 shots on truncated circuit

QUANTINUUM

- ✓ Trapped ion with 20 qubits
- all-to-all connectivity
- $\sim ~ 10^{-5}$ single-qubit gate infidelity
- \checkmark ~10⁻³ two-qubit gate infidelity

Z₂ wavepacket results

6 sites (12 + 1 qubits), $m_f = 1, \epsilon = -0.3$

$$\sigma=rac{\pi}{6}$$
 , $\mu=3$, $k_0=0$

$$\Psi(\mathbf{k}) = \mathcal{N}_{\Psi} \exp(-ik\boldsymbol{\mu}) \exp\left(\frac{-(k-\boldsymbol{k}_0)^2}{4\boldsymbol{\sigma}}\right)$$

• Exact optimized:

Assemble the optimized $|k\rangle$ classically according to the wave packet profile $\Psi(k)$

- Ideal circuit: Fine steps in product formula
 - **Truncated circuit:** Crude steps in product formula, only keep "important" mesons ($|C_{m,n}| > 0.1$)
- **Quantinuum H1-1:** 500 shots on truncated circuit

Symmetry-based error mitigation

- Probability leakage to non-physical Hilbert space due to noise
- Only count the physical outcome

(b) Wave packet with $\sigma = \frac{\pi}{10}$, $\mu = 3$, and $k_0 = 0$

30

Summary & outlook

- Goal: to alleviate the state preparation bottleneck
- Efficient way to build interacting wave packets:
 - Mesonic ansatz
 - Quantum algorithm
 - Efficient circuits realizable on hardware
- Hardware results (Quantinuum):
 - Good agreement with classical computation
 - Simple (symmetry-based) error mitigation

Outlook

- Other hadronic ansatz, non-abelian gauge theory...
- Prepare 2 wave packets and perform scattering

Thanks for listening!

Appendix

1+1D LGTs coupled to staggered fermions

• Hamiltonian:

Staggered formulation

$$H = \frac{1}{2} \sum_{n} \left(\xi_n^{\dagger} \xi_{n+a} U_n + \text{H.c.} \right) + a m_f \sum_{n} (-1)^{\frac{n}{a}} \xi_n^{\dagger} \xi_n + a \epsilon \sum_{n} f(E_n)$$

$$H^h \qquad H^m \qquad H^\epsilon$$

Fermion Anti-fermion Gauge link
$$n = 0$$
 $n = 1$

Theory	$f(E_n)$	U	Ε	Gauss' law: $\mathit{G}_n ig \psi_{phys} angle = g ig \psi_{phys} angle$, $orall n$
<i>Z</i> ₂	E _n	$ ilde{\sigma}^{x}$	$ ilde{\sigma}^z$	$G_n = E_n E_{n-1} \exp\left(i\pi\left(\xi_n^{\dagger}\xi_n - \frac{1 - (-1)^n}{2}\right)\right), g = 1$
<i>U</i> (1)	E_n^2	$\Sigma_l l+1\rangle\langle l $	$\Sigma_l l l\rangle \langle l $	$G_n = E_n - E_{n-1} + \xi_n^{\dagger} \xi_n - \frac{1 - (-1)^n}{2}, g = 0$

a - 1

 $l \in \mathbb{Z} \to |l| \leq \Lambda$

1+1D LGTs coupled to staggered fermions (Z_2)

• Gauss' law for Z_2

- PBC:
 - Well-defined momentum states

$$k \in \tilde{\Gamma} = \frac{2\pi}{N} \left\{ -\frac{N}{2}, -\frac{N}{2} + 1, \cdots, \frac{N}{2} - 1 \right\} \cap \left[-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

Mapping to qubits

ordan-Wigner:
$$\begin{cases} \xi_n^{\dagger} = \left(\prod_{j < n} \sigma_j^z\right) \sigma_n^{-} \\ \xi_n = \left(\prod_{j < n} \sigma_j^z\right) \sigma_n^{+} \end{cases}$$

Physical Hilbert space

$$H = \frac{1}{2} \sum_{n} (\sigma_n^- \sigma_{n+1}^+ \tilde{\sigma}_n^x + \text{H.c.}) + m_f \sum_{n} (-1)^n \sigma_n^- \sigma_n^+ + \epsilon \sum_{n} \tilde{\sigma}_n^z$$

• Hopping on the boundary: $\sigma_{n-1}^- \sigma_0^+ \tilde{\sigma}_{n-1}^x (-1)^{\sum_n \xi_n^+ \xi_n + 1}$

Ansatz for creation operator

$$b_{k}^{\dagger} = \sum_{p,q \in \widetilde{\Gamma}} \delta_{k-p-q} \eta(p,q) \mathcal{B}(p,q) \qquad \qquad \mathcal{B}(p,q) = \sum_{m,n \in \Gamma} \mathcal{C}(p,m) \mathcal{D}(q,n) \mathcal{M}_{m,n}$$
Conservation of momentum Ansatz Mesonic creation operator
$$\mathcal{C}(p,m) = \sqrt{\frac{m_{f} + \omega_{p}}{2\pi\omega_{p}}} [\mathcal{P}_{m0} + v_{p}\mathcal{P}_{m1}] e^{ipm} \quad \mathcal{D}(q,n) = \sqrt{\frac{m_{f} + \omega_{q}}{2\pi\omega_{q}}} [-v_{q}\mathcal{P}_{n0} + \mathcal{P}_{n1}] e^{iqn}$$

$$\mathcal{M}_{m,n} = \xi_{m}^{\dagger} \left(\prod_{l=m-1}^{n-1} U_{l} \right) \xi_{n} \text{ or } \xi_{m}^{\dagger} \left(\prod_{l=m-1}^{0} U_{l}^{\dagger} \right) \left(\prod_{l=m-1}^{n} U_{l}^{\dagger} \right) \xi_{n}$$

$$\boldsymbol{\eta}(\boldsymbol{p},\boldsymbol{q}) = N_{\eta} \exp\left(\frac{i(\boldsymbol{p}-\boldsymbol{q})\boldsymbol{\mu}_{\boldsymbol{k}}^{\boldsymbol{A}}}{2}\right) \exp\left(\frac{-(\boldsymbol{p}-\boldsymbol{q})^{2}}{4\boldsymbol{\sigma}_{\boldsymbol{k}}^{\boldsymbol{A}^{2}}}\right)$$

In each k sector:

- **Optimize** for lowest energy $\langle \Omega | b_k(\mu_k^A, \sigma_k^A) | H | b_k^{\dagger}(\mu_k^A, \sigma_k^A) | \Omega \rangle$
- Obtain the variables $b_k^{\dagger}(\boldsymbol{\mu}_k^{A*}, \boldsymbol{\sigma}_k^{A*})|\Omega\rangle = |\mathbf{k}\rangle$

$$(-1-m') \quad (-1-m-1') (-1-m-1')$$

Ansatz for creation operator

k-momentum state amplitude (6 sites)

Algorithm

- 6-site Z_2 theory
- 40 physical configurations

•
$$k \in \left[-\frac{\pi}{3}, 0, \frac{\pi}{3}\right]$$

• $m_f = 1, \epsilon = -0.3$

Optimization and after $b_{\Psi}^{\dagger} = \sum_{m,n} C_{m,n} \widetilde{\mathcal{M}}_{m,n}$ $= \sum_{m,n} C_{m,n} \sigma_{m}^{-} \sigma_{n}^{+} \left(\prod_{l=m+1}^{n-1} \sigma_{l}^{z}\right) \left(\prod_{l=m}^{n-1} \widetilde{\sigma}_{l}^{x}\right)$

Issues:

- Non-unitary operator b_{Ψ}^{\dagger}
- Multi-spin operator, need efficient circuit design

Ancilla encoding & SVD circuit

Wave-packet circuit

• Ancilla encoding for non-unitary operators

$$b_{\Psi}^{\dagger}|\Omega\rangle = |\Psi\rangle \qquad \qquad \left[b_{\Psi}, b_{\Psi}^{\dagger}\right] = \mathbb{I}$$

$$\Theta \equiv b_{\Psi}^{\dagger} \otimes |\mathbf{1}\rangle \langle \mathbf{0}|_{a} + b_{\Psi} \otimes |\mathbf{0}\rangle \langle \mathbf{1}|_{a}$$
$$e^{-i\frac{\pi}{2}\Theta} |\Omega\rangle \otimes |0\rangle_{a} = -i|\Psi\rangle \otimes |1\rangle_{a}$$

• For composite operator $\Theta = \Sigma_i \Theta_i$, requires Trotterization if summands don't commute

$$\Theta_{m,n} = \sum_{m,n} C_{m,n} \widetilde{\mathcal{M}}_{m,n} \otimes |1\rangle \langle 0|_a + C^*_{m,n} \widetilde{\mathcal{M}}^{\dagger}_{m,n} \otimes |0\rangle \langle 1|_a$$

S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum algorithms for quantum field theories, Science 336, 1130 (2012)

- Singular Value Decomposition circuit
 - Find a basis that diagonalizes

$$\Theta \equiv b_{\Psi}^{\dagger} \otimes |1\rangle \langle 0|_{a} + b_{\Psi} \otimes |0\rangle \langle 1|_{a}$$
$$\downarrow$$
$$b_{\Psi}^{2} = b_{\Psi}^{\dagger}^{2} = 0, b_{\Psi} = VSW^{\dagger}$$

Suppose the SVD for b_{Ψ} is easy to obtain

$$\Theta = \mathcal{U}^{\dagger} D \mathcal{U}$$

$$\begin{cases}
\mathcal{U} = (\text{Had}_{a}) (V^{\dagger} \otimes |0\rangle \langle 0|_{a} + W^{\dagger} \otimes |1\rangle \langle 1|_{a}) \\
D = S \otimes \sigma_{a}^{Z}
\end{cases}$$

$$e^{-i\frac{\pi}{2}\Theta_{m,n}} = \mathcal{U}_{m,n}^{\dagger} e^{-i\frac{\pi}{2}D_{m,n}} \mathcal{U}_{m,n}$$

Z. Davoudi, A. F. Shaw, J. R. Stryker, Quantum 7, 1213 (2023)

Ground state preparation

$$e^{-irac{\pi}{2}\Theta_{m,n}}=\mathcal{U}_{m,n}^{\dagger}e^{-irac{\pi}{2}D_{m,n}}\mathcal{U}_{m,n}$$

$$\begin{cases} C_{m,n} = |C_{m,n}| e^{i\phi_{m,n}} \\ V_{m,n} = e^{\frac{-i\phi_{m,n}}{2}} \sigma_m^Z \sigma_n^Z \left(\prod_{l=m}^{n-1} \tilde{\sigma}_l^X\right) \\ W_{m,n} = e^{\frac{i\phi_{m,n}}{2}} \mathbb{I} \end{cases}$$

$$\mathcal{U}_{m,n} = \operatorname{Had}_{a} \sigma_{a}^{X} \operatorname{R}_{a}^{Z}(\phi_{m,n}) \operatorname{C}_{a,m}^{X} \operatorname{C}_{a,n}^{X} \left(\prod_{l=m}^{n-1} \operatorname{C}_{a,l}^{\tilde{X}} \right) \sigma_{a}^{X}$$
$$D_{m,n} = |C_{m,n}| \left(\frac{\mathbb{I}_{m} - \sigma_{m}^{Z}}{2} \right) \left(\frac{\mathbb{I}_{n} - \sigma_{n}^{Z}}{2} \right) \left(\prod_{l=m+1}^{n-1} \sigma_{l}^{Z} \right) \sigma_{a}^{Z}$$

$$44$$

Angle truncation and Trotter steps

CNOTs count	u	\mathcal{D}	Total
Ground state	-	_	6 <i>N</i>
Wave packet (full)	$\frac{1}{4}N^3 + \frac{5}{2}N^2$	$\frac{1}{2}N^3 + 5N^2 + 2N$	$(N^3 + 10N^2 + 2N) \times 2N_{\text{trotter}}$
Wave packet (1-length)	6 <i>N</i>	14 <i>N</i>	$26N \times 2N_{\text{trotter}}$

- Trotterization
 - 2nd order Trotterization
 - Fast saturation with N_{trotter}
- Truncation:
 - Only implement mesonic operators with $|C_{m,n}| > \theta_c$. $\mathcal{O}(N)$ gates for 1-length mesons
- Parameters in actual implementation:

•
$$\theta_c = 0.1$$
, $N_{\text{trotter}} = 1$

Trotter steps

Constraints and the second straints of the State of th

Finite shot analysis

★ Truncated circuit □ AER simulator △ Quantinuum H1-1 emulator ▲ Quantinuum H1-1

(b) Wave packet with $\sigma = \frac{\pi}{10}$, $\mu = 3$, and $k_0 = 0$

Circuit: gate count

Ontion	Option N_{qubits} $\mathcal{U}, \mathcal{U}^{\dagger}$ TotalOne op. Z_2, GS $2N_{site}$ 2 $4N_{site}$ 2 Z_2, GS $2N_{site}$ 2 $4N_{site}$ 2 Z_2, WP $2N_{site}$ $0, L = 0$ $\frac{1}{4}N_{site}^3 + \frac{5}{2}N_{site}^2$ $2, L = 0$ $P_1, WP, L \leq 1$ $2N_{site}$ $0, L = 0$ $6N_{site}$ $2, L = 0$ $P_1, WP, \Lambda = 1$ $2N_{site}$ $0, L = 0$ $6N_{site}$ $2, L = 0$ $1) WP, \Lambda = 1$ $3N_{site}$ $0, L = 0$ $\frac{1}{2}N_{site}^3 + 2N_{site}^2$ $2, L = 0$ $1) WP, \Lambda = 1, 3N_{site}$ $6, L = 0$ $\frac{1}{2}N_{site}^3 + 2N_{site}^2$ $2, L = 0$ $12N_{site}$ $2, L = 0$ $2, L = 0$	D	Total						
Option Z_2 , GS Z_2 , WP Z_2 , WP $L < 1$	^{IN} qubits	One op.	Total	One op.	Total	Τοται			
Z_2 , GS	2N _{site}	2	4N _{site}	2	2N _{site}	6N _{site}			
7 \\/D	2N _{site}	0, <i>L</i> = 0	1_{N3} 5_{N2}	2, <i>L</i> = 0	$\frac{1}{2}N_{site}^3 + 5N_{site}^2 + 2N_{site}$	2N _{trotter}			
Option N_{t} Z_2, GS 2 Z_2, GS 2 Z_2, WP 2 $Z_2, WP, L \leq 1$ mesons2 $U(1) WP, \Lambda = 1$ 3 $U(1) WP, \Lambda = 1,$ $L \leq 1$ mesons3	+ 1	2 + L, else	$\frac{1}{4}N_{site}^{site} + \frac{1}{2}N_{site}^{site}$	6 + 2 <i>L,</i> else	2 500 500 500	$\cdot \left(N_{site}^3 + 10N_{site}^2 + 2N_{site} \right)$			
Z_2 , WP, $L \leq 1$	2N _{site}	0, <i>L</i> = 0	GN	2, <i>L</i> = 0	1 <i>4</i> N	$N_{trotter} \cdot 26N_{site}$			
mesons	+1	3, else	ON _{site}	6, else	14N _{site}				
$U(1) \wedge D \wedge = 1$	3N _{site}	0, <i>L</i> = 0	$ \begin{array}{c} 2, L = 0 \\ + L, else \\ 0, L = 0 \\ 3, else \\ 0, L = 0 \\ - 4L, else \\ \end{array} $ $ \begin{array}{c} 1 \\ 4 \\ N_{site}^{3} + \frac{5}{2} \\ N_{site}^{2} \\ - \frac{5}{2} \\ N_{site}^{2} \\ - \frac{5}{2} \\ N_{site}^{2} \\ - \frac{5}{2} \\ - \frac{5}{2}$	1_{N^3} , πN^2 , $2N$	$2N_{trotter}$				
Z_2 , WP, $L \le 1$ mesons $U(1)$ WP, $\Lambda = 1$ $U(1)$ WP, $\Lambda = 1$,	+ 1	2 + 4L, else	$\frac{1}{2}N_{site}^{\circ} + 2N_{site}^{\circ}$	6 + 2L, else	$\frac{-N_{site}}{2} + 5N_{site} + 2N_{site}$	$\left \cdot \left(\frac{3}{2} N_{site}^3 + 13 N_{site}^2 + 2 N_{site} \right) \right $			
$U(1)$ WP, $\Lambda = 1$,	3N _{site}	6, L = 0	12N	2, L = 0	1 <i>4</i> N	N			
$L \leq 1$ mesons	+1	6, else	121Nsite	6, else	14Nsite	Ntrotter · Solvsite			

经常的过去式 化结合物 医结核的 化化合物 化过程的 化结合的 化过程 计正式 计分词通知分词 计正式 医血栓 机合物 化化合物 网络海豚 化化合物 化过程分子

Physical-configuration label	$ 0\rangle_{f}$	$ 0\rangle_{b}$	$ 1\rangle_{f}$	$ 1\rangle_{h}$	$ 2\rangle_{f}$	$ 2\rangle_{b}$	$ 3\rangle_{f}$	$ 3\rangle_{b}$	$ 4\rangle_{f}$	$ 4\rangle_b$	$ 5\rangle_f$	$ 5\rangle_{b}$
0	0	0	1	0	0	0	1	0	0	0	1	0
1	1	1	0	0	0	0	1	0	0	0	1	0
2	0	0	0	1	1	0	1	0	0	0	1	0
3	0	0	1	0	1	1	0	0	0	0	1	0
4	1	1	0	0	1	1	0	0	0	0	1	0
5	1	1	1	1	0	1	0	0	0	0	1	0
6	0	0	1	0	0	0	0	1	1	0	1	0
7	1	1	0	0	0	0	0	1	1	0	1	0
8	0	0	0	1	1	0	0	1	1	0	1	0
9	0	0	0	1	0	1	1	1	1	0	1	0
10	0	0	1	0	0	0	1	0	1	1	0	0
11	1	1	0	0	0	0	1	0	1	1	0	0
12	0	0	0	1	1	0	1	0	1	1	0	0
13	0	0	1	0	1	1	0	0	1	1	0	0
14	1	1	0	0	1	1	0	0	1	1	0	0
15	1	1	1	1	0	1	0	- 0	1	1	0	0
16	1	1	1	1	1	0	0	1	- 0	1	0	0
17	0	0	1	0	1	1	1	1	0	1	0	0
18	1	1	0	0	1	1	1	1	0	1	0	0
19	1	1	1	1	0	1	1	1	0	1	0	0
20	1	0	1	0	0	0	1	- 0	- 0	0	0	1
21	1	0	0	1	1	0	1	0	0	0	0	1
22	0	1	1	1	1	- 0	1	0	- 0	0	0	1
23	1	0	1	0	1	1	0	0	0	0	0	1
24	1	0	1	0	0	0	0	1	1	0	- 0	1
25	1	0	0	1	1	0	0	1	1	0	0	1
26	0	1	1	1	1	0	- 0	1	1	0	0	1
27	0	1	0	0	1	1	1	1	1	0	0	1
28	1	0	0	1	0	1	1	1	1	0	0	1
29	- 0	1	1	1	0	1	1	1	1	0	0	1
30	0	1	0	0	0	0	1	0	1	1	1	1
31	0	1	0	0	1	1	0	0	1	1	1	1
32	1	0	0	1	0	1	0	0	1	1	1	1
33	0	1	1	1	0	1	0	0	1	1	1	1
34	1	0	1	0	0	0	0	1	0	1	1	1
35	1	0	0	1	1	0	0	1	0	1	1	1
36	0	1	1	1	1	0	0	1	0	1	1	1
37	0	1	0	0	1	1	1	1	0	1	1	1
38	1	0	0	1	0	1	1	1	0	1	1	1
39	0	1	1	1	0	1	1	1	0	1	1	1

Physical-configuration label	$ 0\rangle_{f}$	$ 0\rangle_b$	$ 1\rangle_{f}$	$ 1\rangle_b$	$ 2\rangle_f$	$ 2\rangle_b$	$ 3\rangle_f$	$ 3\rangle_b$	$ 4\rangle_f$	$ 4\rangle_b$	$ 5\rangle_f$	$ 5\rangle_b$
0	1	0	1	0	1	-1	0	- 0	0	- 0	- 0	1
1	1	-1	1	$^{-1}$	0	-1	1	-1	0	-1	0	0
2	1	0	1	0	0	0	1	0	0	0	0	1
3	1	-1	0	0	1	-1	1	$^{-1}$	0	$^{-1}$	0	0
4	1	0	0	1	1	0	1	0	- 0	0	0	1
5	0	0	1	0	1	-1	1	$^{-1}$	0	$^{-1}$	0	0
6	0	1	1	1	1	0	1	0	0	0	0	1
7	1	$^{-1}$	1	$^{-1}$	0	$^{-1}$	0	0	1	$^{-1}$	0	0
8	1	0	1	0	0	0	0	1	1	- 0	- 0	1
9	1	-1	0	0	1	-1	0	0	1	-1	0	0
10	1	0	0	1	1	0	0	1	1	0	0	1
11	0	0	1	0	1	-1	0	0	1	-1	0	0
12	0	1	1	1	1	0	0	1	1	0	- 0	1
13	1	-1	0	0	0	0	1	- 0 -	1	-1	- 0 -	- 0 -
14	1	0	0	1	0	1	1	1	1	- 0	0	1
15	0	0	1	0	0	0	1	- 0	1	-1	- 0	- 0 -
16	0	1	1	1	0	1	1	1	1	0	0	1
17	0	0	0	1	1	0	1	- 0 -	1	-1	- 0	- 0 -
18	1	-1	1	$^{-1}$	0	-1	- 0	- 0 -	0	- 0 -	1	- 0 -
19	1	0	1	0	0	0	- 0	1	0	1	1	1
20	1	-1	0	0	1	-1	0	- 0 -	- 0	- 0 -	1	- 0 -
21	1	0	0	1	1	0	0	1	- 0	1	1	1
22	0	0	1	0	1	-1	0	0	- 0	0	1	0
23	0	1	1	1	1	0	0	1	0	1	1	1
24	1	-1	0	0	- 0	0	1	- 0	- 0 -	0	1	0
25	1	0	0	1	0	1	1	1	- 0	1	1	1
26	0	-1	1	-1	0	-1	1	-1	- 0	-1	1	-1
27	0	0	1	0	0	0	1	- 0	- 0	0	1	- 0 -
28	0	1	1	1	0	1	1	1	- 0	1	1	1
29	- 0	-1	0	0	1	-1	1	-1	- 0 -	-1	1	-1
30	0	0	- 0	1	1	0	1	-0	0	- 0	1	0
31	1	-1	0	0	0	0	- 0	1	1	- 0	1	- 0
32	0	-1	1	-1	0	-1	0	0	1	-1	1	-1
33	0	0	1	0	0	0	0	1	1	0	1	0
34	0	-1	0	0	1	-1	0	0	1	-1	1	-1
35	0	0	0	1	1	0	0	1	1	0	1	- 0
36	0	-1	0	0	0	0	1	0	1	-1	1	-1
37	0	0	0	1	0	1	1	1	1	0	1	0