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Why should we care about sub-percent uncertainty for ? 

QED corrections to : estimates from PT 

Non-monotonic FV corrections to 

gA

gA χ

gA

Subtleties and Systematics in achieving sub-percent uncertainty for  gA



 

In the absence of  new physics, unitarity constrains the elements of  CKM 
e.g.  for  

Intense effort to test heavy flavor violation with charm/bottom quarks 

The first row is showing robust tension 
,     

                                       
             Cabibbo Angle Anomaly 
At this level of  precision, careful treatment of  radiative QED corrections has 
become the frontier 

Original Sirlin & Marciano et al approach 
modern pheno and EFT treatments 
lattice QCD + QED
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V
(27)NS[32]total
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less tension with 

> 3σ Nf = 2 + 1 + 1
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The first row is showing robust tension — [some of  the values in this estimate] 
,     

                                       
              Cabibbo Angle Anomaly 
Exciting prospects for neutron -decay to match precision from superallowed 
alleviating the need for modeling the nuclear structure (NS) corrections 
 

 
 

                                  
 
  

Reaching target precision requires improving the uncertainty from radiative 
QED corrections, in particular,  
 

      

ΔCKM = |Vud |2 + |Vus |2 + |Vub |2 − 1 V0+→0+
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Figure 1. The �W -box diagrams for the semileptonic decay
process Hi →Hfe⌫̄e.

that computed using lattice QCD. The study of �V V

�W
has

so far included estimations inspired by the holographic
QCD model [19] and dispersion relations [11].

Lattice QCD o↵ers a direct nonperturbative approach
to compute the box correction �V A

�W
, especially for Q2 ≤ 2

GeV2. First lattice calculations of �V A

�W
were successfully

conducted in the pion [20] and kaon channel [21, 22], and
have recently been confirmed by an independent lattice
calculation [23]. The data reported in [20] were also used
for a joint lattice QCD - dispersion relation analysis [17].
This letter extends this calculation to the neutron decay
channel, which entails a direct computation of the
nucleon four-point function at the physical pion mass.
We also briefly discuss our numerical result of �V V

�W
, and

its implication to the radiative correction to axial charge.

Methodology: The notations used in this work align
with those used in [20]. We define the hadronic function
H

V A

µ⌫
within Euclidean space

HV A

µ⌫
(t, �x) ≡ �Hf �T �Jem

µ
(t, �x)JW,A

⌫
(0)� �Hi�, (3)

where Hi�f represents the zero-momentum projected
neutron/proton state, created by a smeared-source nu-
cleon operator. The computation of box contribution
�V A

�W
involves a momentum integral

�V A

�W
= 3↵e

2⇡ �
dQ

2

Q2

m
2
W

m
2
W
+Q2

Mn(Q2). (4)

Mn(Q2) is a weighted integral of the hadronic function
H(t, �x) = ✏µ⌫↵0x↵HV A

µ⌫
(t, �x), defined as

Mn(Q2) = −1
6

�
Q2

mN

� d
4
x!(t, �x)H(t, �x), (5)

with mW and mN the masses of the W -boson and the
nucleon. The weighting function is

!(t, �x) = �
⇡
2

−⇡
2

cos3 ✓ d✓

⇡

j1 �� �Q���x��
��x�

cos (Q0t) , (6)

where � �Q� =
�
Q2 cos ✓, Q0 =

�
Q2 sin ✓ and jn(x) are the

spherical Bessel functions.
To evaluate Mn(Q2) as prescribed in Eq. (5), it is

necessary to extend the temporal integration range suf-
ficiently to reduce truncation e↵ects. However, as the

time separation between the two currents increases, the
lattice data tend to exhibit greater noise-to-signal ratio.
Here we employ the infinite volume reconstruction (IVR)
method [24] to incorporate the long-distance (LD) con-
tribution arising from the region where �t� > ts. Here, ts
is the time slice at which the short-distance (SD) and
LD contributions are separated. The IVR method, in
addition to eliminating the power-law suppressed finite
volume error, can also reduce the lattice statistical error
in the long distance region. To elaborate, we divide the
integral into SD contribution, weighted by !(t, �x), and
LD contribution, weighted by !̃(t, �x)

Mn(Q2) =MSD
n
(Q2

, ts) +MLD
n
(Q2

, ts, tg) (7)

with

M
SD
n
(Q2

, ts) = −
1

6

�
Q2

mN

�
ts

−ts dt� d
3�x!(t, �x)H(t, �x),

M
LD
n
(Q2

, ts, tg) = −
1

6

�
Q2

mN

� d
3�x !̃(ts, tg, �x)H̄(tg, �x),

(8)

and

!̃(ts, tg, �x) =2�
⇡
2

−⇡
2

cos3 ✓d✓

⇡

j1 �� �Q���x��
��x�

×

Re� e
−iQ0ts

E �Q −mN + iQ0
� e−(E �Q−mN )(ts−tg).

(9)

Here, H̄(t, �x) = [H(t, �x)+H(−t, �x)]�2, E �Q =
�

m
2
N
+ � �Q�2

and tg is chosen to be large enough to ensure the ground-
intermediate-state dominance. Once tg is fixed, ts can be
varied to further verify the ground-state dominance. In
the final results, it is natural to choose ts = tg.
Due to the factor 1�Q2 in Eq. (4), we observe that
�V A

�W
encounters a notably increased noise originating

from Mn(Q2) at small Q2 region. To mitigate this noise,
we can use the model-independent relation

� d
3�x H̄(tg, �x) = −3̊gA(µ̊p + µ̊n) (10)

to substitute M
LD
n
(Q2

, ts, tg) with

M
LD
n
= −1

6

�
Q2

mN

� d
3�x [!̃(ts, �x) − !̃0] H̄(tg, �x)

+ 1

2

�
Q2

mN

!̃0gA(µp + µn). (11)

Above, as far as ground-state dominance is satisfied,
H̄(tg, �x) is independent of tg. µ̊p,n denote the pro-
ton/neutron magnetic moments defined in the isospin
limit. During the substitution process, we incorporate
experimentally measured values for gA and µp,n as de-
picted in Eq. (11). The di↵erence is of a higher order

λPDG = λ"exp" − ΔR,Sirlin,analytic
A = λQCD−iso + ΔR,other

A

ΔR,other
A ≃ O(2%)  = QED correction to ΔR,other

A gA
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QED corrections to gA

We compare our LQCD calculations of  
 to  

 is determined from an experimental 
measurement of   after some 
analytic long-distance QED effects are 
subtracted — see Hayen & Young, 
2009.11364 for discussion 

But it turns out - potentially significant 
low-energy nucleon structure corrections 
may spoil this comparison
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Systematic, EFT treatment of  neutron β-decay 
 
The parameters can be measured 
 
If  we want to connect them to Standard Model (SM) parameters 
we need to start from a Lagrangian with parameters related to SM parameters 
 
 
pion-less low-energy EFT 
 
 
 
 
 
Perform the calculation with SU(2) heavy-baryon 𝝌PT and match the results to this pion-less EFT 
whose parameters can be matched to experimentally measured quantities
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We compute the electromagnetic corrections to neutron beta decay using a low-energy hadronic
e↵ective field theory. We identify new radiative corrections arising from virtual pions that were
missed in previous studies. The largest correction is a percent-level shift in the axial charge of the
nucleon proportional to the electromagnetic part of the pion-mass splitting. Smaller corrections,
comparable to anticipated experimental precision, impact the �-⌫ angular correlations and the �-
asymmetry. We comment on implications of our results for the comparison of the experimentally
measured nucleon axial charge with first-principles computations using lattice QCD and on the
potential of �-decay experiments to constrain beyond-the-Standard-Model interactions.

PACS numbers:
Keywords:

Introduction — High-precision measurements of low-
energy processes, such as � decays of mesons, neutron,
and nuclei, probe the existence of new physics at very
high energy scales through quantum fluctuations. Re-
cent developments in the study of � decay rates at the
sub-% level [1–5] have led to a 3-5� tension with the
Standard Model (SM) interpretation in terms of the uni-
tary Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [5, 6]. Further, global analyses of � decay ob-
servables [7, 8] have highlighted additional avenues for
� decays to probe physics beyond the Standard Model
(BSM) at the multi-TeV scale, such as the comparison
of the experimentally extracted weak axial charge, gA,
with precise lattice Quantum ChromoDynamics (QCD)
calculations [9–11]. This test is a unique and sensitive
probe of BSM right-handed charged currents.

Given the expected improvements in experimental pre-
cision in the next few years [12–14], a necessary condition
to use neutron decay as probe of BSM physics is to have
high-precision calculations within the SM, including sub-
% level recoil and radiative corrections with controlled
uncertainties. These prospects have spurred new theo-
retical activity, which has focused first on radiative cor-
rections to the strength of the Fermi transition (vector
coupling) [1–4], and more recently on the corrections to
the Gamow-Teller (axial) coupling [15, 16]. These recent
studies are all rooted in the current algebra approach de-
veloped in the sixties and seventies [17, 18], combined
with the novel use of dispersive techniques.

In principle, lattice QCD can be used to compute the
full Standard Model n ! pe⌫̄ decay amplitude includ-
ing radiative QED corrections, similar to the determina-
tion of the leptonic pion decay rate [19, 20]. However, it

will be some years before these calculations reach su�-
cient precision. Currently, lattice QCD calculations are
carried out in the isospin limit. The global average de-
termination of gA carries a 2.2% uncertainty [21] with
one result achieving a 0.74% uncertainty [11, 22]. The
PDG average value, on the other hand, has an 0.1% un-
certainty [6] with the most precise experiment having an
0.035% uncertainty [23].
In this Letter, we present a systematic e↵ective field

theory (EFT) study of radiative corrections to the neu-
tron decay di↵erential decay rate given by [9, 24–26]

d�

dEed⌦ed⌦⌫
=

(GFVud)2

(2⇡)5
(1 + 3�2)w(Ee)

⇥


1 + ā(�)

~pe · ~p⌫

EeE⌫
+ Ā(�)

~�n · ~pe

Ee
+ ...

�
, (1)

whereGF is the Fermi constant, Vud is the up-down CKM
matrix element, w(Ee) describes the electron spectrum,
~�n denotes the neutron polarization, and � ⌘ gA/gV is
the ratio of the weak vector (axial) couplings defined in
Eq. (2) below, which in absence of radiative corrections
reduce to the nucleon isovector vector (axial) charges.
Correlation coe�cients such as ā(�) and Ā(�) can be
precisely measured and allow for an experimental deter-
mination of �. In Eq. (1) we kept terms of relevance
for the present discussion and refer to the supplementary
material for the full expressions.

In the EFT framework we compute new structure-
dependent electromagnetic corrections originating at
the pion mass scale, including e↵ects up to O(↵),
O(↵m⇡/mN ), andO(↵me/m⇡), with ↵ = e

2
/4⇡ the fine-

structure constant, me the electron mass, and m⇡(mN )

2

the pion (nucleon) mass. By doing so we uncover new
percent-level electromagnetic corrections to the axial cou-
pling gA, which were missed both in the only other neu-
tron � decay EFT analysis [25] and recent dispersive
treatments [15, 16]. These corrections a↵ect the com-
parison between the present lattice-QCD results for the
nucleon axial charge gQCD

A and the experimentally deter-
mined � (see Eq. (11) and subsequent discussion). In
addition, our new corrections imply measurable changes
in the decay correlations in Eq. (1) (see Eq. (15)).

Neutron decay from the Standard Model — The energy
release in neutron decay is roughly the mass splitting of
the neutron and proton, i.e. qext ⇠ mn �mp ⇠ 1 MeV,
which is significantly smaller than the nucleon mass. The
energy scale of nucleon structure corrections, on the other
hand, is related to the pion mass, so that mN � m⇡ �

mn � mp. As a consequence, corrections to neutron �

decay can be parametrized in terms of two small param-
eters: (i) ✏recoil = qext/mN ⇠ 0.1% which characterizes
small kinetic corrections; (ii) ✏/⇡ = qext/m⇡ ⇠ 1%, which
characterizes nucleon structure corrections dominated by
pion contributions. At these relatively low energies, the
decay amplitude can be described by a non-relativistic
Lagrangian density (see also Refs. [25, 27])

L/⇡ = �
p
2GFVud


ē�µPL⌫e

✓
N̄ (gV vµ � 2gASµ) ⌧

+
N

+
i

2mN
N̄(vµv⌫ � g

µ⌫
� 2gAv

µ
S
⌫)(
 �
@ �

�!
@ )⌫⌧

+
N

◆

+
icTme

mN
N̄ (Sµ

v
⌫
� S

⌫
v
µ) ⌧+N (ē�µ⌫PL⌫)

+
iµweak

mN
N̄ [Sµ

, S
⌫ ]⌧+N @⌫ (ē�µPL⌫)

�
+ . . . (2)

where pions have been integrated out (hence subscript /⇡),
and the ellipsis denote terms not a↵ected by our anal-
ysis. In this expression, N

T = (p, n) is an isodoublet
of nucleons, while vµ and Sµ represent the velocity and
spin of the nucleon, respectively. The e↵ective vector and
axial-vector couplings, gV and gA, reduce to the isovector
nucleon vector and axial charges if one ignores radiative
corrections, while µweak and cT are the weak magnetic
moment and an e↵ective tensor coupling, respectively.
Eq. (2) can be used to compute the di↵erential neutron
decay rate and the parameters can then be fitted to data.

There are a number of short-comings to this approach.
First, by utilizing measured values of Vud gV , gA/gV ,
µweak, and cT , we cannot extract fundamental SM pa-
rameters nor distinguish SM from BSM contributions to
these low-energy constants (LECs). Second, it is not pos-
sible to disentangle, for example, how much of gA arises
from isospin symmetric QCD versus electromagnetic con-
tributions. Therefore, it is desirable to utilize an EFT
which encodes the corrections as functions of the SM
parameters, such as the quark masses and the electro-
magnetic couplings. This is known as chiral perturba-

tion theory (�PT) [28, 29], or specifically for baryons,
heavy baryon �PT (HB�PT) [30]. The cost of such a
description is the introduction of new scales, m⇡ and
⇤� = 4⇡F⇡ ⇠ 1 GeV with F⇡ ' 92.4 MeV, which form
another expansion parameter, ✏� = m⇡/⇤�, and new op-
erators with potentially undetermined LECs.
In light of the above discussion, radiative corrections to

neutron decay can be organized in a double expansion in
↵✏

n
�✏

m
/⇡ . First, we integrate out the pions and match the

�PT amplitude to the /⇡EFT amplitude, thus determin-
ing the quark mass and electromagnetic corrections to
e↵ective couplings such as gA. Then, the neutron decay
amplitude can be computed with /⇡EFT (with dynamical
photons and leptons) while retaining explicit sensitivity
to the parameters of the Standard Model. In our analysis
of the decay amplitude we retain terms of O(GF ✏recoil),
known in the literature, O(GF↵), where we uncover pre-
viously overlooked e↵ects, and terms of O(GF↵✏�) and
O(GF↵✏/⇡), never before considered in the literature.

�PT setup for neutron decay — To study radiative
corrections to weak semi-leptonic transitions, we adopt
the HB�PT framework [30] with dynamical photons [31–
33] and leptons, in analogy with the meson sector [34].
This EFT provides a necessary intermediate step in the
analysis of neutron decay, before integrating out pions,
and is the starting point for the study of related processes
such as muon capture, low-energy neutrino-nucleus scat-
tering, and nuclear � decays, which of course require a
non-trivial generalization to multi-nucleon e↵ects.

In �PT with dynamical photons and leptons, semilep-
tonic amplitudes are expanded in the Fermi constant GF

(to first order), the electromagnetic fine structure con-
stant ↵, and ✏�, while keeping all orders in qext/m⇡,
according to Weinberg’s power counting [35–37]. Fol-
lowing standard practice, derivatives (@ ⇠ p) and the
electroweak couplings e, GF are assigned chiral dimen-
sion one, while the light quark mass is assigned chiral
dimension two (m2

⇡ ⇠ p
2).

The leading amplitude AGF p0

arises from one insertion
of the lowest order Lagrangian L

p
⇡N

L
p
⇡N � �

p
2GFVud N̄

⇣
vµ � 2g(0)A Sµ

⌘
⌧
+
N ē�µPL⌫e ,(3)

where g
(0)

A denotes the nucleon axial charge in the chiral
limit and in absence of electromagnetic e↵ects.
To capture electromagnetic corrections to O(GF↵),

O(GF↵✏�), and O(GF↵✏/⇡), we need to compute the neu-

tron decay amplitude to chiral dimension three (Ae2GF p0

)

and four (Ae2GF p). The former arises from one-loop di-
agrams involving virtual nucleons, pions, photons, and
charged leptons, with vertices from L

p
⇡N and from the

leading order electromagnetic mesonic Lagrangian L
e2p0

⇡

(see Fig. 1, upper panel). Here, an important role is
played by insertions of

L
e2p0

⇡ = 2e2F 2

⇡Z⇡⇡
+
⇡
� +O(⇡4), (4)

<latexit sha1_base64="xoTEa8d/5nGsOS+jG/90q0Z9W9Y=">AAACDXicbVBPS8MwHE3nvzn/VT2Jl+AQPMhoZagXYerF4wT3B9Yy0jTdwtK0JOlglOJH8FN41ZM38epn8OB3Met60M0HCY/33o/k97yYUaks68soLS2vrK6V1ysbm1vbO+buXltGicCkhSMWia6HJGGUk5aiipFuLAgKPUY63uh26nfGREga8Qc1iYkbogGnAcVIaalvHjhMh30Er6ATCITTQf8601c765tVq2blgIvELkgVFGj2zW/Hj3ASEq4wQ1L2bCtWboqEopiRrOIkksQIj9CA9DTlKCTy1B/TWObUTfNtMnisTR8GkdCHK5irv4dTFEo5CT2dDJEaynlvKv7n9RIVXLop5XGiCMezh4KEQRXBaTXQp4JgxSaaICyo/jbEQ6RLUbrAiu7Dnt9+kbTPavZ5rX5frzZuimbK4BAcgRNggwvQAHegCVoAg0fwDF7Aq/FkvBnvxscsWjKKmX3wB8bnD86Ym5s=</latexit>

� =
gA
gV

Pion-induced radiative corrections to neutron beta-decay 
Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]
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Sub-set of  O(50) diagrams

3

a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(GF↵) (upper panel) and O(GF↵✏�) (lower
panel). Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to

interactions from the lowest-order chiral Lagrangians, while diamonds represent insertions of L
e2p0
⇡ . Circled dots denote

interactions from the NLO pion-nucleon Lagrangian.

with the LEC Z⇡ fixed by the relation m
2

⇡± � m
2

⇡0 =
2e2F 2

⇡Z⇡, up to higher-order corrections. Additional
contributions arise from tree-level graphs with one
insertion of higher order Lagrangians. Finally, the
A

e2GF p amplitude is a combination of one-loop diagrams

with one vertex from higher order Lagrangians L
p2

⇡N or

L
e2p0

⇡N (see Fig. 1, lower panel). All relevant e↵ective
Lagrangians are presented in the Supplemental Material,
including a new one needed to absorb divergences from
loops involving virtual baryons, photons, and leptons.

Matching at O(↵) and O(↵✏�) – The diagrams con-
tributing to the matching between �PT and /⇡EFT at
O(✏0�) and O(✏�) are shown in Fig. 1. They imply for
the leading vector and axial operators

gV/A = g
(0)

V/A

"
1 +

1X

n=2

�(n)
V/A,� +

↵

2⇡

1X

n=0

�(n)
V/A,em

+

✓
mu �md

⇤�

◆nV/A 1X

n=0

�(n)
V/A,�m

#
, (5)

where g
(0)

V = 1, �(n)
�,em,�m ⇠ O(✏n�), and nA = 1, nV =

2 [38, 39]. Explicit calculation gives �(0),(1)
A,�m = 0 and

�(0)

V,�m = 0 to the order we work. A non-zero �(0)

V,�m,
such as estimated in Ref. [40], arises to higher order in
the EFT framework. Concerning the chiral corrections

in the isospin limit, �(n)
V,� vanish due to conservation of

the vector current, while �(n)
A,� have been calculated up

to n = 4 in Refs. [41–43], and can for our purposes be
absorbed into a definition of gA in the isospin limit, which
we denote by g

QCD

A .
To O(↵✏0�) we consider the diagrams in Fig. 1, up-

per panel. Diagram (a1) appears in the same form in
both EFTs, and thus does not contribute to the match-
ing. An explicit calculation shows that the O(✏0/⇡) term of

diagrams (b1) and (d1) and (c1) and (e1) cancels, leav-
ing O(✏/⇡) corrections discussed below. Diagrams (g1)
and (j1) vanish exactly at O(✏0�), while (f1), (h1), (i1)
contribute to the vector operator only to be cancelled
by corrections to the nucleon wavefunction renormaliza-
tion (WFR) at zero momentum transfer (q = 0). As a
consequence, gV does not receive loop corrections in the
matching between �PT and /⇡EFT, instead picking up
contributions only from local operators of O(e2p) so that

�(0)

V,em = ĈV . By contrast, the axial operator is modified
through diagram (i1), the WFR, and local operators of
O(e2p), leading to
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Here µ denotes the renormalization scale that appears
in the dimensionally regularized chiral loops. We pro-
vide in the Supplemental Material the explicit depen-
dence of ĈV,A on the LECs of O(e2p). Here we note

that as written, ĈV,A contain information about short-
distance physics and in particular large logarithms con-
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⇡Z⇡, up to higher-order corrections. Additional
contributions arise from tree-level graphs with one
insertion of higher order Lagrangians. Finally, the
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e2GF p amplitude is a combination of one-loop diagrams

with one vertex from higher order Lagrangians L
p2

⇡N or

L
e2p0

⇡N (see Fig. 1, lower panel). All relevant e↵ective
Lagrangians are presented in the Supplemental Material,
including a new one needed to absorb divergences from
loops involving virtual baryons, photons, and leptons.
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we denote by g
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both EFTs, and thus does not contribute to the match-
ing. An explicit calculation shows that the O(✏0/⇡) term of

diagrams (b1) and (d1) and (c1) and (e1) cancels, leav-
ing O(✏/⇡) corrections discussed below. Diagrams (g1)
and (j1) vanish exactly at O(✏0�), while (f1), (h1), (i1)
contribute to the vector operator only to be cancelled
by corrections to the nucleon wavefunction renormaliza-
tion (WFR) at zero momentum transfer (q = 0). As a
consequence, gV does not receive loop corrections in the
matching between �PT and /⇡EFT, instead picking up
contributions only from local operators of O(e2p) so that
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V,em = ĈV . By contrast, the axial operator is modified
through diagram (i1), the WFR, and local operators of
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Here µ denotes the renormalization scale that appears
in the dimensionally regularized chiral loops. We pro-
vide in the Supplemental Material the explicit depen-
dence of ĈV,A on the LECs of O(e2p). Here we note

that as written, ĈV,A contain information about short-
distance physics and in particular large logarithms con-
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ing O(✏/⇡) corrections discussed below. Diagrams (g1)
and (j1) vanish exactly at O(✏0�), while (f1), (h1), (i1)
contribute to the vector operator only to be cancelled
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Here µ denotes the renormalization scale that appears
in the dimensionally regularized chiral loops. We pro-
vide in the Supplemental Material the explicit depen-
dence of ĈV,A on the LECs of O(e2p). Here we note

that as written, ĈV,A contain information about short-
distance physics and in particular large logarithms con-
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⇡Z⇡, up to higher-order corrections. Additional
contributions arise from tree-level graphs with one
insertion of higher order Lagrangians. Finally, the
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with one vertex from higher order Lagrangians L
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⇡N or

L
e2p0

⇡N (see Fig. 1, lower panel). All relevant e↵ective
Lagrangians are presented in the Supplemental Material,
including a new one needed to absorb divergences from
loops involving virtual baryons, photons, and leptons.

Matching at O(↵) and O(↵✏�) – The diagrams con-
tributing to the matching between �PT and /⇡EFT at
O(✏0�) and O(✏�) are shown in Fig. 1. They imply for
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A,�m = 0 and
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V,�m = 0 to the order we work. A non-zero �(0)
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such as estimated in Ref. [40], arises to higher order in
the EFT framework. Concerning the chiral corrections

in the isospin limit, �(n)
V,� vanish due to conservation of
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A,� have been calculated up
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absorbed into a definition of gA in the isospin limit, which
we denote by g
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both EFTs, and thus does not contribute to the match-
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and (j1) vanish exactly at O(✏0�), while (f1), (h1), (i1)
contribute to the vector operator only to be cancelled
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consequence, gV does not receive loop corrections in the
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in the dimensionally regularized chiral loops. We pro-
vide in the Supplemental Material the explicit depen-
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Here µ denotes the renormalization scale that appears
in the dimensionally regularized chiral loops. We pro-
vide in the Supplemental Material the explicit depen-
dence of ĈV,A on the LECs of O(e2p). Here we note
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including a new one needed to absorb divergences from
loops involving virtual baryons, photons, and leptons.
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contribute to the vector operator only to be cancelled
by corrections to the nucleon wavefunction renormaliza-
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+ĈA(µ) .

(6)
Here µ denotes the renormalization scale that appears
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V,em = ĈV . By contrast, the axial operator is modified
through diagram (i1), the WFR, and local operators of
O(e2p), leading to

�(0)

A,em = Z⇡

"
1 + 3g(0)2A

2

✓
log

µ
2

m2
⇡

� 1

◆
� g

(0)2

A

#
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+ĈA(µ) .

(6)
Here µ denotes the renormalization scale that appears
in the dimensionally regularized chiral loops. We pro-
vide in the Supplemental Material the explicit depen-
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necting the weak scale to the hadronic scale [18, 44–46]
and finite terms that have been calculated via dispersive
methods [1–4].

A similar analysis applies to the NLO amplitude, for
which we report a few representative diagrams in the
lower panel of Fig. 1. At q = 0, all diagrams contribut-
ing to the vector operator are cancelled by the WFR,

resulting in �(1)

V,em = 0. The correction to gA is

�(1)

A,em = Z⇡ 4⇡m⇡


c4 � c3 +

3

8mN
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16mN
g
(0)2
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�
, (7)

dominated by the NLO ⇡N LECs c3,4 via topology (a2).
Matching at O(↵✏/⇡) — Through our final matching

step, we identify additional isospin breaking terms to
the LECs of the pion-less Lagrangian. Specifically, the
pion loops with the vector current coupling to two pions
(topology (f1)) induce an isospin-breaking correction to
the weak magnetism term. In terms of the physical nu-
cleon magnetic moments, µn/p, we find

�µweak = µweak � (µp � µn) = �
↵Z⇡

2⇡

g
2

AmN⇡

m⇡
. (8)

Finally, the pion-� box (b1) induces the tensor coupling

cT =
↵

2⇡

gAmN⇡

3m⇡
. (9)

Connection to previous literature — Recent ap-
proaches using current algebra and dispersion techniques
[15, 16] evaluated axial contributions as originating from
vertex corrections, in which the virtual photon is emit-
ted and absorbed by the hadronic line, and �W box,
in which the virtual photon is exchanged between the
hadronic and electron lines. The latter was found to be
largely consistent with the vector contribution using ex-
perimental data of the polarized Bjorken sum rule [15]
and additional nucleon scattering data [16]. The vertex
corrections, on the other hand, have only been calculated
in limiting scenarios. Following the notation of Ref. [15],
the contribution depends on a three-point function

D� =
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4
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where �(W ) denotes electromagnetic (weak) currents,
and T{. . .} the time-ordered product. At large momen-
tum, this expression was evaluated with the Operator
Product Expansion, finding D

OPE
� = 0 in the isospin

limit. For more general momentum scales, the inte-
gral was approximated by retaining only the on-shell nu-
cleon states with their elastic form factors, concluding
D� ⇡ 0 [15]. Our work goes beyond this elastic approxi-
mation by capturing through EFT, the leading pion con-
tributions to D� .

Numerical impact — We now estimate the numerical
impact of the various corrections starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
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⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (11)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is
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For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 47].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [48, 49]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. We find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (13)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [49]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (14)

This large shift has no impact on the current first-row
CKM discrepancy because the most accurate determi-
nation of � is at present obtained from experiments,
where these corrections are automatically included. On
the other hand, the correction does have a big impact
when comparing lattice QCD calculations of �, currently
performed in the isospin limit without QED, with the
state-of-the-art experimental determinations of �. We il-

lustrate the significance of �(�)
RC

in Fig. 2. Compared to
the most precise individual lattice calculation [22], our
radiative corrections corresponds to a 2.7� shift and a

Low-Energy-Constants (LECs)
CA(µ) - completely unknown 
c3 & c4 are estimated from literature
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dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. We find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (13)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [49]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (14)

This large shift has no impact on the current first-row
CKM discrepancy because the most accurate determi-
nation of � is at present obtained from experiments,
where these corrections are automatically included. On
the other hand, the correction does have a big impact
when comparing lattice QCD calculations of �, currently
performed in the isospin limit without QED, with the
state-of-the-art experimental determinations of �. We il-

lustrate the significance of �(�)
RC

in Fig. 2. Compared to
the most precise individual lattice calculation [22], our
radiative corrections corresponds to a 2.7� shift and a

Using Naive Dimensional Analysis (NDA) to estimate CA(µ) and c3,4 from the literature 
                    an order of  magnitude larger than previous estimatesδ(λ)

RC ∈ {1.4,2.6} ⋅ 10−2
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Sub-set of  O(50) diagrams
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LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(GF↵) (upper panel) and O(GF↵✏�) (lower
panel). Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to

interactions from the lowest-order chiral Lagrangians, while diamonds represent insertions of L
e2p0
⇡ . Circled dots denote

interactions from the NLO pion-nucleon Lagrangian.

with the LEC Z⇡ fixed by the relation m
2

⇡± � m
2

⇡0 =
2e2F 2

⇡Z⇡, up to higher-order corrections. Additional
contributions arise from tree-level graphs with one
insertion of higher order Lagrangians. Finally, the
A

e2GF p amplitude is a combination of one-loop diagrams

with one vertex from higher order Lagrangians L
p2

⇡N or

L
e2p0

⇡N (see Fig. 1, lower panel). All relevant e↵ective
Lagrangians are presented in the Supplemental Material,
including a new one needed to absorb divergences from
loops involving virtual baryons, photons, and leptons.

Matching at O(↵) and O(↵✏�) – The diagrams con-
tributing to the matching between �PT and /⇡EFT at
O(✏0�) and O(✏�) are shown in Fig. 1. They imply for
the leading vector and axial operators

gV/A = g
(0)

V/A

"
1 +

1X

n=2

�(n)
V/A,� +

↵

2⇡

1X

n=0

�(n)
V/A,em

+

✓
mu �md

⇤�

◆nV/A 1X

n=0

�(n)
V/A,�m

#
, (5)

where g
(0)

V = 1, �(n)
�,em,�m ⇠ O(✏n�), and nA = 1, nV =

2 [38, 39]. Explicit calculation gives �(0),(1)
A,�m = 0 and

�(0)

V,�m = 0 to the order we work. A non-zero �(0)

V,�m,
such as estimated in Ref. [40], arises to higher order in
the EFT framework. Concerning the chiral corrections

in the isospin limit, �(n)
V,� vanish due to conservation of

the vector current, while �(n)
A,� have been calculated up

to n = 4 in Refs. [41–43], and can for our purposes be
absorbed into a definition of gA in the isospin limit, which
we denote by g

QCD

A .
To O(↵✏0�) we consider the diagrams in Fig. 1, up-

per panel. Diagram (a1) appears in the same form in
both EFTs, and thus does not contribute to the match-
ing. An explicit calculation shows that the O(✏0/⇡) term of

diagrams (b1) and (d1) and (c1) and (e1) cancels, leav-
ing O(✏/⇡) corrections discussed below. Diagrams (g1)
and (j1) vanish exactly at O(✏0�), while (f1), (h1), (i1)
contribute to the vector operator only to be cancelled
by corrections to the nucleon wavefunction renormaliza-
tion (WFR) at zero momentum transfer (q = 0). As a
consequence, gV does not receive loop corrections in the
matching between �PT and /⇡EFT, instead picking up
contributions only from local operators of O(e2p) so that

�(0)

V,em = ĈV . By contrast, the axial operator is modified
through diagram (i1), the WFR, and local operators of
O(e2p), leading to

�(0)

A,em = Z⇡

"
1 + 3g(0)2A

2

✓
log

µ
2

m2
⇡

� 1

◆
� g

(0)2

A

#
+ĈA(µ) .

(6)
Here µ denotes the renormalization scale that appears
in the dimensionally regularized chiral loops. We pro-
vide in the Supplemental Material the explicit depen-
dence of ĈV,A on the LECs of O(e2p). Here we note

that as written, ĈV,A contain information about short-
distance physics and in particular large logarithms con-

photons
pions

pion electromagnetic mass splitting
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Low-Energy-Constants (LECs)

4

necting the weak scale to the hadronic scale [18, 44–46]
and finite terms that have been calculated via dispersive
methods [1–4].

A similar analysis applies to the NLO amplitude, for
which we report a few representative diagrams in the
lower panel of Fig. 1. At q = 0, all diagrams contribut-
ing to the vector operator are cancelled by the WFR,

resulting in �(1)

V,em = 0. The correction to gA is

�(1)

A,em = Z⇡ 4⇡m⇡


c4 � c3 +

3

8mN
+

9

16mN
g
(0)2

A

�
, (7)

dominated by the NLO ⇡N LECs c3,4 via topology (a2).
Matching at O(↵✏/⇡) — Through our final matching

step, we identify additional isospin breaking terms to
the LECs of the pion-less Lagrangian. Specifically, the
pion loops with the vector current coupling to two pions
(topology (f1)) induce an isospin-breaking correction to
the weak magnetism term. In terms of the physical nu-
cleon magnetic moments, µn/p, we find

�µweak = µweak � (µp � µn) = �
↵Z⇡

2⇡

g
2

AmN⇡

m⇡
. (8)

Finally, the pion-� box (b1) induces the tensor coupling

cT =
↵

2⇡

gAmN⇡

3m⇡
. (9)

Connection to previous literature — Recent ap-
proaches using current algebra and dispersion techniques
[15, 16] evaluated axial contributions as originating from
vertex corrections, in which the virtual photon is emit-
ted and absorbed by the hadronic line, and �W box,
in which the virtual photon is exchanged between the
hadronic and electron lines. The latter was found to be
largely consistent with the vector contribution using ex-
perimental data of the polarized Bjorken sum rule [15]
and additional nucleon scattering data [16]. The vertex
corrections, on the other hand, have only been calculated
in limiting scenarios. Following the notation of Ref. [15],
the contribution depends on a three-point function

D� =

Z
d
4
k

k2

Z
d
4
ye

iq̄y

Z
d
4
xe

ikx

⇥ hpf |T
�
@µJ

µ
W (y)J�

� (x)J
�
� (0)

 
|pii , (10)

where �(W ) denotes electromagnetic (weak) currents,
and T{. . .} the time-ordered product. At large momen-
tum, this expression was evaluated with the Operator
Product Expansion, finding D

OPE
� = 0 in the isospin

limit. For more general momentum scales, the inte-
gral was approximated by retaining only the on-shell nu-
cleon states with their elastic form factors, concluding
D� ⇡ 0 [15]. Our work goes beyond this elastic approxi-
mation by capturing through EFT, the leading pion con-
tributions to D� .

Numerical impact — We now estimate the numerical
impact of the various corrections starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (11)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (12)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 47].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [48, 49]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. We find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (13)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [49]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (14)

This large shift has no impact on the current first-row
CKM discrepancy because the most accurate determi-
nation of � is at present obtained from experiments,
where these corrections are automatically included. On
the other hand, the correction does have a big impact
when comparing lattice QCD calculations of �, currently
performed in the isospin limit without QED, with the
state-of-the-art experimental determinations of �. We il-

lustrate the significance of �(�)
RC

in Fig. 2. Compared to
the most precise individual lattice calculation [22], our
radiative corrections corresponds to a 2.7� shift and a

+
ĈA(μ)

 = gPDG
A gQCD−iso

A + δ(λ)
RC(αfs, ĈA(μ), . . . )

seems to move  towards  

need LQCD+QED calculation to determine 

gQCD
A gexp

A

δ(λ)
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Introduction — High-precision measurements of low-
energy processes, such as � decays of mesons, neutron,
and nuclei, probe the existence of new physics at very
high energy scales through quantum fluctuations. Re-
cent developments in the study of � decay rates at the
sub-% level [1–5] have led to a 3-5� tension with the
Standard Model (SM) interpretation in terms of the uni-
tary Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [5, 6]. Further, global analyses of � decay ob-
servables [7, 8] have highlighted additional avenues for
� decays to probe physics beyond the Standard Model
(BSM) at the multi-TeV scale, such as the comparison
of the experimentally extracted weak axial charge, gA,
with precise lattice Quantum ChromoDynamics (QCD)
calculations [9–11]. This test is a unique and sensitive
probe of BSM right-handed charged currents.

Given the expected improvements in experimental pre-
cision in the next few years [12–14], a necessary condition
to use neutron decay as probe of BSM physics is to have
high-precision calculations within the SM, including sub-
% level recoil and radiative corrections with controlled
uncertainties. These prospects have spurred new theo-
retical activity, which has focused first on radiative cor-
rections to the strength of the Fermi transition (vector
coupling) [1–4], and more recently on the corrections to
the Gamow-Teller (axial) coupling [15, 16]. These recent
studies are all rooted in the current algebra approach de-
veloped in the sixties and seventies [17, 18], combined
with the novel use of dispersive techniques.

In principle, lattice QCD can be used to compute the
full Standard Model n ! pe⌫̄ decay amplitude includ-
ing radiative QED corrections, similar to the determina-
tion of the leptonic pion decay rate [19, 20]. However, it

will be some years before these calculations reach su�-
cient precision. Currently, lattice QCD calculations are
carried out in the isospin limit. The global average de-
termination of gA carries a 2.2% uncertainty [21] with
one result achieving a 0.74% uncertainty [11, 22]. The
PDG average value, on the other hand, has an 0.1% un-
certainty [6] with the most precise experiment having an
0.035% uncertainty [23].
In this Letter, we present a systematic e↵ective field

theory (EFT) study of radiative corrections to the neu-
tron decay di↵erential decay rate given by [9, 24–26]

d�

dEed⌦ed⌦⌫
=

(GFVud)2

(2⇡)5
(1 + 3�2)w(Ee)

⇥


1 + ā(�)

~pe · ~p⌫

EeE⌫
+ Ā(�)

~�n · ~pe

Ee
+ ...

�
, (1)

whereGF is the Fermi constant, Vud is the up-down CKM
matrix element, w(Ee) describes the electron spectrum,
~�n denotes the neutron polarization, and � ⌘ gA/gV is
the ratio of the weak vector (axial) couplings defined in
Eq. (2) below, which in absence of radiative corrections
reduce to the nucleon isovector vector (axial) charges.
Correlation coe�cients such as ā(�) and Ā(�) can be
precisely measured and allow for an experimental deter-
mination of �. In Eq. (1) we kept terms of relevance
for the present discussion and refer to the supplementary
material for the full expressions.

In the EFT framework we compute new structure-
dependent electromagnetic corrections originating at
the pion mass scale, including e↵ects up to O(↵),
O(↵m⇡/mN ), andO(↵me/m⇡), with ↵ = e

2
/4⇡ the fine-

structure constant, me the electron mass, and m⇡(mN )
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energy processes, such as � decays of mesons, neutron,
and nuclei, probe the existence of new physics at very
high energy scales through quantum fluctuations. Re-
cent developments in the study of � decay rates at the
sub-% level [1–5] have led to a 3-5� tension with the
Standard Model (SM) interpretation in terms of the uni-
tary Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [5, 6]. Further, global analyses of � decay ob-
servables [7, 8] have highlighted additional avenues for
� decays to probe physics beyond the Standard Model
(BSM) at the multi-TeV scale, such as the comparison
of the experimentally extracted weak axial charge, gA,
with precise lattice Quantum ChromoDynamics (QCD)
calculations [9–11]. This test is a unique and sensitive
probe of BSM right-handed charged currents.

Given the expected improvements in experimental pre-
cision in the next few years [12–14], a necessary condition
to use neutron decay as probe of BSM physics is to have
high-precision calculations within the SM, including sub-
% level recoil and radiative corrections with controlled
uncertainties. These prospects have spurred new theo-
retical activity, which has focused first on radiative cor-
rections to the strength of the Fermi transition (vector
coupling) [1–4], and more recently on the corrections to
the Gamow-Teller (axial) coupling [15, 16]. These recent
studies are all rooted in the current algebra approach de-
veloped in the sixties and seventies [17, 18], combined
with the novel use of dispersive techniques.

In principle, lattice QCD can be used to compute the
full Standard Model n ! pe⌫̄ decay amplitude includ-
ing radiative QED corrections, similar to the determina-
tion of the leptonic pion decay rate [19, 20]. However, it

will be some years before these calculations reach su�-
cient precision. Currently, lattice QCD calculations are
carried out in the isospin limit. The global average de-
termination of gA carries a 2.2% uncertainty [21] with
one result achieving a 0.74% uncertainty [11, 22]. The
PDG average value, on the other hand, has an 0.1% un-
certainty [6] with the most precise experiment having an
0.035% uncertainty [23].
In this Letter, we present a systematic e↵ective field

theory (EFT) study of radiative corrections to the neu-
tron decay di↵erential decay rate given by [9, 24–26]
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whereGF is the Fermi constant, Vud is the up-down CKM
matrix element, w(Ee) describes the electron spectrum,
~�n denotes the neutron polarization, and � ⌘ gA/gV is
the ratio of the weak vector (axial) couplings defined in
Eq. (2) below, which in absence of radiative corrections
reduce to the nucleon isovector vector (axial) charges.
Correlation coe�cients such as ā(�) and Ā(�) can be
precisely measured and allow for an experimental deter-
mination of �. In Eq. (1) we kept terms of relevance
for the present discussion and refer to the supplementary
material for the full expressions.
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We compute the electromagnetic corrections to neutron beta decay using a low-energy hadronic
e↵ective field theory. We identify new radiative corrections arising from virtual pions that were
missed in previous studies. The largest correction is a percent-level shift in the axial charge of the
nucleon proportional to the electromagnetic part of the pion-mass splitting. Smaller corrections,
comparable to anticipated experimental precision, impact the �-⌫ angular correlations and the �-
asymmetry. We comment on implications of our results for the comparison of the experimentally
measured nucleon axial charge with first-principles computations using lattice QCD and on the
potential of �-decay experiments to constrain beyond-the-Standard-Model interactions.
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Introduction — High-precision measurements of low-
energy processes, such as � decays of mesons, neutron,
and nuclei, probe the existence of new physics at very
high energy scales through quantum fluctuations. Re-
cent developments in the study of � decay rates at the
sub-% level [1–5] have led to a 3-5� tension with the
Standard Model (SM) interpretation in terms of the uni-
tary Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [5, 6]. Further, global analyses of � decay ob-
servables [7, 8] have highlighted additional avenues for
� decays to probe physics beyond the Standard Model
(BSM) at the multi-TeV scale, such as the comparison
of the experimentally extracted weak axial charge, gA,
with precise lattice Quantum ChromoDynamics (QCD)
calculations [9–11]. This test is a unique and sensitive
probe of BSM right-handed charged currents.

Given the expected improvements in experimental pre-
cision in the next few years [12–14], a necessary condition
to use neutron decay as probe of BSM physics is to have
high-precision calculations within the SM, including sub-
% level recoil and radiative corrections with controlled
uncertainties. These prospects have spurred new theo-
retical activity, which has focused first on radiative cor-
rections to the strength of the Fermi transition (vector
coupling) [1–4], and more recently on the corrections to
the Gamow-Teller (axial) coupling [15, 16]. These recent
studies are all rooted in the current algebra approach de-
veloped in the sixties and seventies [17, 18], combined
with the novel use of dispersive techniques.

In principle, lattice QCD can be used to compute the
full Standard Model n ! pe⌫̄ decay amplitude includ-
ing radiative QED corrections, similar to the determina-
tion of the leptonic pion decay rate [19, 20]. However, it

will be some years before these calculations reach su�-
cient precision. Currently, lattice QCD calculations are
carried out in the isospin limit. The global average de-
termination of gA carries a 2.2% uncertainty [21] with
one result achieving a 0.74% uncertainty [11, 22]. The
PDG average value, on the other hand, has an 0.1% un-
certainty [6] with the most precise experiment having an
0.035% uncertainty [23].
In this Letter, we present a systematic e↵ective field

theory (EFT) study of radiative corrections to the neu-
tron decay di↵erential decay rate given by [9, 24–26]
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whereGF is the Fermi constant, Vud is the up-down CKM
matrix element, w(Ee) describes the electron spectrum,
~�n denotes the neutron polarization, and � ⌘ gA/gV is
the ratio of the weak vector (axial) couplings defined in
Eq. (2) below, which in absence of radiative corrections
reduce to the nucleon isovector vector (axial) charges.
Correlation coe�cients such as ā(�) and Ā(�) can be
precisely measured and allow for an experimental deter-
mination of �. In Eq. (1) we kept terms of relevance
for the present discussion and refer to the supplementary
material for the full expressions.

In the EFT framework we compute new structure-
dependent electromagnetic corrections originating at
the pion mass scale, including e↵ects up to O(↵),
O(↵m⇡/mN ), andO(↵me/m⇡), with ↵ = e

2
/4⇡ the fine-

structure constant, me the electron mass, and m⇡(mN )
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What is the issue? 

We (the LQCD community) think of  FV corrections in the asymptotic scaling regime 

We have numerical evidence that the sign of  the FV correction depends upon   😱 

We have qualitative evidence that the sign of  FV corrections at  MeV is not the 
same as at  

We have qualitative evidence that the sign of  the FV corrections can change  

at fixed  as one varies  

at fixed  as one varies  

We should not find this surprising, after all, for nucleon quantities
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Numerical Evidence:
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Expectations from PT 

The chiral expansion for nucleons is a series in , while for pions, it is in  

therefore, higher order corrections are relatively more important 

The nucleon has a much richer spectrum of  virtual excited states ( ) 

In the large  limit, there is an exact cancellation of  most NLO corrections to  

The finite volume corrections also respect this cancellation and lead to a sign change 
at fixed  vs  

SU(2) HB PT( ) at NNLO also predicts change in sign of  FV corrections
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Expectations from PT 
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tion Theory (ChiPT). We investigate the pion mass de-
pendence of such finite volume trends, and explore the
sensitivity of a final quoted result for gA to the use of
various infinite volume extrapolation formulae, including
those predicted by ChiPT.

ANDRE: add discussion about using EFT as qualita-
tive vs quantitative guide, and how this has led to indus-
try standard, which to fit the FV coe�cient

ANDRE: this should be in intro Our main goal of this
work is to assess the treatment of finite volume correc-
tions in the literature, to understand potential shortcom-
ings of the most common strategy used and to suggest a
new strategy for more precise results. Given their non-
monotnic behavior, one challenge in isolating the FV
corrections is that they are comparable in size to the
observed discretization e↵ects. In principle, these correc-
tions should be independent, through the separation of
short and long distance scales of the problem. In prac-
tice, because the FV corrections are assessed by fitting
coe�cients multiplying FV correction terms, their con-
tributions become entangled with the short-distance dis-
cretization corrections. Depending upon the model cho-
sen for the FV corrections, the sign of the determined
discretization corrections can change through the analy-
sis.

Finally, we take the opportunity to update our result
in Refs. [1, 2].

II. FINITE VOLUME CORRECTIONS

ANDRE: somewhere in here The FV corrections in
�PT are derived by treating the time extent as infinite
while replacing the spatial loop integrals with sums over
the allowed momenta, determined by the boundary con-
ditions (typically periodic)

A. Expectations from �PT

We should not be surprised that the FV corrections to
gA are more complex than for other quantities, particu-
larly for meson quantities. First, the chiral expansion for
nucleon quantities is a series in ✏⇡, defined as

✏⇡ ⌘ m⇡

⇤�
, ⇤� ⌘ 4⇡F⇡ , (2.1)

while for the pion, the expansion is in powers of ✏
2
⇡.

Therefore, corrections from higher orders are relatively
more important for a given precision. The same holds
for heavy mesons involving a charm or bottom quark.

Second, the mass gap to the delta-resonance is small,
� ⌘ m� � mN ⇡ 293 MeV, and it is strongly coupled
to the nucleon, both through QCD dynamics as well as
through large electroweak couplings that govern N ! �
matrix elements. Therefore, the delta-resonance makes
significant contributions to many quantities, adding an-
other channel of important radiative virtual corrections.

Third, for gA specifically, the virtual delta corrections
in the chiral expansion are opposite in sign as those from
virtual nucleon corrections. One can understand the rel-
ative minus sign using a large Nc expansion, which pre-
dicts the cancellation of the virtual nucleon and delta
corrections in the Nc ! 1 limit. Ref. [3] determined
the leading FV corrections to gA, at NLO, arising from
both nucleon and delta virtual corrections, for which the
relative sign remains opposite. We find that the N2LO
FV corrections also respect this sign di↵erence.
In this work, we explore the possible impact of the

delta-resonace contributions to the FV correction to gA,
but we do not use the formula in our uncertainty analy-
sis. This is because our LQCD results are insu�cient to
constrain all the unknown couplings and LECs that arise
when explicit delta degrees of freedom are included. In
order to have a LQCD data-drive analysis, we must also
include N⇡ scattering states and N ! � transition ma-
trix elements as well as the axial coupling of the delta
itself. First LQCD results in this direction are now avail-
able CITE[], but they are not yet su�cient to conduct
this more thorough analysis.
We instead focus on an understanding through SU(2)

heavy baryon �PT (HB�PT) CITE[Jenkins and
Manohar] without explicit delta states. In this EFT,
the expression for gA is known through N3LO CITE[],
which is O(✏4⇡). We will focus on the N2LO analysis,
for which the infinite volume formula was first derived in
Ref. CITE[]. The leading FV corrections arise at NLO
and were first derived in Ref. [3]. The FV corrections
arising at N2LO, which are still from one-loop integrals,
are presented in this work. Through N2LO, the expres-
sion for gA, including FV corrections, is given by

gA = g0 +�(2) + �
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FV
+�(3) + �
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FV
, (2.2)

where we denote the infinite volume corrections by �(n)

and the finite volume corrections by �
(n)
FV

where n denotes
the order in ✏
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⇡ at which they contribute.

The infinite volume corrections are given by
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and the corresponding finite volume corrections from
each order are given by
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In these expressions, F = limm⇡!0 F⇡,

c̃i = (4⇡F )ci, d̃
r
i = (4⇡F )2dri , (2.6)
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The Kn(x) are modified Bessel Functions of the second
kind.
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FV corrections from NLO w/� and NNLO without �
with pheno LECs

B. Numerical observations of FV corrections

ANDRE: add here our plot of just data on a12m220,
a12m310 and also Regensburg results at m⇡ ⇠ 280 �
320 ZACK: added the CalLat data. If the labels are too
cluttered, there are a set without them.

DIMITRA: Attempt, feel free to modify or remove:
The NLO �PT prediction for the FV dependence of gA,

delta
(2)

FV
defined in Eq. (2.4), predicts a monotonically de-

creasing behavior both with increasing volume at fixed

m⇡. In Ref. [1], delta
(2)

FV
with g0 obtained from the IV

NNLO �PT was found to be in good agreement with
the data from three ensembles at fixed a = 0.12 fm and
m⇡ = 220 MeV (shown in Fig. 1(a)). However, when

using delta
(2)

FV
plus an NNLO �PT estimate to the finite

volume dependence (Eq. (2.5) was not yet derived at that
time) which included an additional free parameter, the
volume dependence at a = 0.12 fm and m⇡ = 220 MeV
was found to have the opposite monotonicity than what
the data and Eq. (2.4) suggests. This is thought to be
driven by the data corresponding to heavier m⇡ ensem-
bles. Data from RQCD [4] in the range m⇡ ⇠ 280� 290,
shown in Fig. 1(b) supports this observation that at heav-
ier pion mass the volume dependence of gA might be
increasing with increasing volume, in contrast with the
NLO �PT prediction. These numerical observations mo-
tivate for a more thorough study of gA data compatibility
with di↵erent models, and at what precision these model
choices can a↵ect the infinite volume extrapolated result.

III. UPDATED MDWF/HISQ CALCULATION

We update the results in Ref. [1], which utilized a
mixed lattice-action [5, 6] with Nf = 2 + 1 + 1 Highly
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FIG. 1. Top: We plot the the raw lattice data from Ref. [1]
for m⇡ ⇠ 220 MeV and a ⇠ 0.12 fm. Middle: The data point
at the smallest volume with m⇡ ⇠ 310 MeV and a ⇠ 0.12
fm from Ref. [1], with two new ensembles at larger volumes
analyzed for this work. Bottom: The volume dependence of
data published by RQCD [4] at m⇡ ⇠ 280� 290 MeV.

Improved Staggered Quarks (HISQ) [7] in the sea and
Möbius Domain Wall Fermion (MDWF) [8, 9] quarks in
the valence sector. The gauge links were smoothed with
gradient flow [10, 11] prior to using them in the Dirac op-
erator, resulting in our MDWF/HISQ action [12]. Some
of the HISQ ensembles were generated by the MILC Col-
laboration [13, 14] while the rest were generated by the
CalLat Collaboration [1, 15, 16] including a new ensemble
first used in this work.
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tion Theory (ChiPT). We investigate the pion mass de-
pendence of such finite volume trends, and explore the
sensitivity of a final quoted result for gA to the use of
various infinite volume extrapolation formulae, including
those predicted by ChiPT.

ANDRE: add discussion about using EFT as qualita-
tive vs quantitative guide, and how this has led to indus-
try standard, which to fit the FV coe�cient

ANDRE: this should be in intro Our main goal of this
work is to assess the treatment of finite volume correc-
tions in the literature, to understand potential shortcom-
ings of the most common strategy used and to suggest a
new strategy for more precise results. Given their non-
monotnic behavior, one challenge in isolating the FV
corrections is that they are comparable in size to the
observed discretization e↵ects. In principle, these correc-
tions should be independent, through the separation of
short and long distance scales of the problem. In prac-
tice, because the FV corrections are assessed by fitting
coe�cients multiplying FV correction terms, their con-
tributions become entangled with the short-distance dis-
cretization corrections. Depending upon the model cho-
sen for the FV corrections, the sign of the determined
discretization corrections can change through the analy-
sis.

Finally, we take the opportunity to update our result
in Refs. [1, 2].

II. FINITE VOLUME CORRECTIONS

ANDRE: somewhere in here The FV corrections in
�PT are derived by treating the time extent as infinite
while replacing the spatial loop integrals with sums over
the allowed momenta, determined by the boundary con-
ditions (typically periodic)

A. Expectations from �PT

We should not be surprised that the FV corrections to
gA are more complex than for other quantities, particu-
larly for meson quantities. First, the chiral expansion for
nucleon quantities is a series in ✏⇡, defined as

✏⇡ ⌘ m⇡

⇤�
, ⇤� ⌘ 4⇡F⇡ , (2.1)

while for the pion, the expansion is in powers of ✏
2
⇡.

Therefore, corrections from higher orders are relatively
more important for a given precision. The same holds
for heavy mesons involving a charm or bottom quark.

Second, the mass gap to the delta-resonance is small,
� ⌘ m� � mN ⇡ 293 MeV, and it is strongly coupled
to the nucleon, both through QCD dynamics as well as
through large electroweak couplings that govern N ! �
matrix elements. Therefore, the delta-resonance makes
significant contributions to many quantities, adding an-
other channel of important radiative virtual corrections.

Third, for gA specifically, the virtual delta corrections
in the chiral expansion are opposite in sign as those from
virtual nucleon corrections. One can understand the rel-
ative minus sign using a large Nc expansion, which pre-
dicts the cancellation of the virtual nucleon and delta
corrections in the Nc ! 1 limit. Ref. [3] determined
the leading FV corrections to gA, at NLO, arising from
both nucleon and delta virtual corrections, for which the
relative sign remains opposite. We find that the N2LO
FV corrections also respect this sign di↵erence.
In this work, we explore the possible impact of the

delta-resonace contributions to the FV correction to gA,
but we do not use the formula in our uncertainty analy-
sis. This is because our LQCD results are insu�cient to
constrain all the unknown couplings and LECs that arise
when explicit delta degrees of freedom are included. In
order to have a LQCD data-drive analysis, we must also
include N⇡ scattering states and N ! � transition ma-
trix elements as well as the axial coupling of the delta
itself. First LQCD results in this direction are now avail-
able CITE[], but they are not yet su�cient to conduct
this more thorough analysis.
We instead focus on an understanding through SU(2)

heavy baryon �PT (HB�PT) CITE[Jenkins and
Manohar] without explicit delta states. In this EFT,
the expression for gA is known through N3LO CITE[],
which is O(✏4⇡). We will focus on the N2LO analysis,
for which the infinite volume formula was first derived in
Ref. CITE[]. The leading FV corrections arise at NLO
and were first derived in Ref. [3]. The FV corrections
arising at N2LO, which are still from one-loop integrals,
are presented in this work. Through N2LO, the expres-
sion for gA, including FV corrections, is given by
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In these expressions, F = limm⇡!0 F⇡,

c̃i = (4⇡F )ci, d̃
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i = (4⇡F )2dri , (2.6)
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The Kn(x) are modified Bessel Functions of the second
kind.
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FIG. 1. Top: We plot the the raw lattice data from Ref. [1]
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the NLO finite volume functions are given by [3]

F
(2)

1
(x) =

X

~n 6=0


K0(x|~n|) � K1(x|~n|)

x|~n|

�
,

F
(2)

3
(x) = �3

2

X

~n 6=0

K1(x|~n|)
x|~n| , (2.7)

and the NNLO functions are

F
(3)

1
(x) =

X

~n 6=~0

K 1
2
(x|~n|)

p
⇡
2
x|~n|

x|~n| =
X

~n 6=~0

e
�x|~n|

F
(3)

3
(x) =

X

~n 6=~0

K 1
2
(x|~n|)

p
⇡
2
x|~n|

=
X

~n 6=~0

e
�x|~n|

x|~n| (2.8)

The Kn(x) are modified Bessel Functions of the second
kind.

ANDRE: add some discussion and plots of expected
FV corrections from NLO w/� and NNLO without �
with pheno LECs

B. Numerical observations of FV corrections

ANDRE: add here our plot of just data on a12m220,
a12m310 and also Regensburg results at m⇡ ⇠ 280 �
320 ZACK: added the CalLat data. If the labels are too
cluttered, there are a set without them.

DIMITRA: Attempt, feel free to modify or remove:
The NLO �PT prediction for the FV dependence of gA,

delta
(2)

FV
defined in Eq. (2.4), predicts a monotonically de-

creasing behavior both with increasing volume at fixed

m⇡. In Ref. [1], delta
(2)

FV
with g0 obtained from the IV

NNLO �PT was found to be in good agreement with
the data from three ensembles at fixed a = 0.12 fm and
m⇡ = 220 MeV (shown in Fig. 1(a)). However, when

using delta
(2)

FV
plus an NNLO �PT estimate to the finite

volume dependence (Eq. (2.5) was not yet derived at that
time) which included an additional free parameter, the
volume dependence at a = 0.12 fm and m⇡ = 220 MeV
was found to have the opposite monotonicity than what
the data and Eq. (2.4) suggests. This is thought to be
driven by the data corresponding to heavier m⇡ ensem-
bles. Data from RQCD [4] in the range m⇡ ⇠ 280� 290,
shown in Fig. 1(b) supports this observation that at heav-
ier pion mass the volume dependence of gA might be
increasing with increasing volume, in contrast with the
NLO �PT prediction. These numerical observations mo-
tivate for a more thorough study of gA data compatibility
with di↵erent models, and at what precision these model
choices can a↵ect the infinite volume extrapolated result.

III. UPDATED MDWF/HISQ CALCULATION

We update the results in Ref. [1], which utilized a
mixed lattice-action [5, 6] with Nf = 2 + 1 + 1 Highly
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FIG. 1. Top: We plot the the raw lattice data from Ref. [1]
for m⇡ ⇠ 220 MeV and a ⇠ 0.12 fm. Middle: The data point
at the smallest volume with m⇡ ⇠ 310 MeV and a ⇠ 0.12
fm from Ref. [1], with two new ensembles at larger volumes
analyzed for this work. Bottom: The volume dependence of
data published by RQCD [4] at m⇡ ⇠ 280� 290 MeV.

Improved Staggered Quarks (HISQ) [7] in the sea and
Möbius Domain Wall Fermion (MDWF) [8, 9] quarks in
the valence sector. The gauge links were smoothed with
gradient flow [10, 11] prior to using them in the Dirac op-
erator, resulting in our MDWF/HISQ action [12]. Some
of the HISQ ensembles were generated by the MILC Col-
laboration [13, 14] while the rest were generated by the
CalLat Collaboration [1, 15, 16] including a new ensemble
first used in this work.

c̃i = (4πF) ci

in SU(2) HB PT( ), with N3LO  phase shift analysis 
Siemens et al, 1610.08978 

 GeV-1 
 GeV-1 

 

This leads to LARGE, negative FV correction 
Fitting  to our LQCD results yields a value  smaller — leads to change in sign of   as function of  

χ Δ Nπ

c3 = − 5.60(6)
c4 = 4.26(4)

2c4 − c3 ∼ 10 × δFV mπ
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Current strategy (of  most groups) 

take asymptotic form of  Bessel functions and leading “wrap around the world” mode 
and only leading volume correction 
 
 

Fit  essentially to heavy  results 

Use this -independent value of   to extrapolate  
to infinite volume at all  

If  the volume corrections do change sign 
(to agree with PT prediction close to ) 
the current strategy will lead to an error 

At what precision will this occur?

c2 mπ

mπ c2
mπ

χ mphys
π
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What should we do? 

One needs to perform a volume study at multiple pion masses with sufficient precision to 
constrain the sign of  the volume correction as a function of   

              

Or - we need to rely only upon  with sufficient precision to control the final 
uncertainty of   as well as the volume correction 

Or - determine quantitatively that some variant of  HB PT provides an accurate 
description of  both the  dependence as well as  dependence

mπ

gA(L) = gA + c2
m2

π

(4πFπ)2

e−mπL

mπL
+ c3

m3
π

(4πFπ)3
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+ ⋯

mπ ≈ mphys
π

gA

χ
mπ mπL
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“But you just told me there is an unknown  QED correction to , so why should I care?” 

Presumably, we will figure out how to determine this QED correction, which will allow us to utilize our high-precision 
iso-symmetric LQCD determination of   by applying the QED correction in a correlated way

O(2%) gA

gA

Non-monotonic FV corrections to  
Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti,  

H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — In preparation
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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β decays and BSM physics

• New physics contributing to β decays also affects

• Precision electroweak observables

• Drell-Yan processes at colliders  

• Need the ‘CLEW’  framework to analyze the impact of β decays on new physics! 
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The CLEW framework
• So we see that a consistent analysis of beta decays in the SM-EFT requires using data from 
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“But you just told me there is an unknown  QED correction to , so why should I care?” 

Presumably, we will figure out how to determine this QED correction, which will allow us to utilize our high-precision 
iso-symmetric LQCD determination of   by applying the QED correction in a correlated way
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to
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Vud
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K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

←

← ↔

β decays and BSM physics

• New physics contributing to β decays also affects

• Precision electroweak observables

• Drell-Yan processes at colliders  

• Need the ‘CLEW’  framework to analyze the impact of β decays on new physics! 

? dj

ui

dj

ui

35

The CLEW framework
• So we see that a consistent analysis of beta decays in the SM-EFT requires using data from 

VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  in preparation 

Low energy 
CC and NC 

Collider: 
Drell-Yan,  
associated 

Higgs 
production, … 

Electroweak precision: 
Z decays,  W mass, …  

C L

EW

VC, W. Dekens, J. De Vries,  E. Mereghetti, 
T. Tong,  JHEP 03 (24) 33, arXiv: 2311.00021−0.04 −0.02 0.00 0.02 0.04

ξud

−0.04

−0.02

0.00

0.02

0.04

δV
u

d

unitarity

µWH = 1.0 ± 0.1

0+ → 0+, π → µν

WH,
√

S = 14 TeV

n → pe−ν̄

Comparing  to  including control of  , allows us to constrain BSM right-handed currentsgQCD
A gPDG

A ΔR,other
A



21

There is tension in the first-row CKM unitarity,  

BSM right-handed currents offer a favored solution to the tension 

LQCD calculation of  , plus radiative QED corrections, provides such a constraint 

estimates from PT suggests ,  

 seems to exhibit non-monotonic FV corrections 

As the precision of  results improves, the current strategy of  most groups 

                   

will lead to an error 

At what precision of  results will this become important?
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Subtleties and Systematics in achieving sub-percent uncertainty for  gA
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