Lattice 2024 Liverpool, UK, July 28 — August 3, 2024

Lattice 2024 Liverpool, UK, July 28 — August 3, 2024

Lattice 2024 Liverpool, UK, July 28 — August 3, 2024

- \square Why should we care about sub-percent uncertainty for g_A ?
- \square QED corrections to g_A : estimates from χ PT
- \square Non-monotonic FV corrections to g_A

First-row CKM Unitarity & Precision β decays

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{Weak}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{QCD}$$

$$\underbrace{\begin{pmatrix} d \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}}_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{QCD}$$

- ☐ In the absence of new physics, unitarity constrains the elements of CKM e.g. $\sum_{j=d,s,b} |V_{ij}|^2 = 1$ for i = u, c, t
- ☐ Intense effort to test *heavy* flavor violation with charm/bottom quarks
- ☐ The first row is showing robust tension

$$\Delta_{\text{CKM}} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1, \quad V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{\text{exp}}(13)_{\Delta_V^R}(27)_{\text{NS}}[32]_{\text{total}}$$
$$= -0.00176(56) \qquad V_{us}^{K_{\ell^3}} = 0.22330(35)_{\text{exp}}(39)_{f_+}(8)_{\text{IB}}[53]_{\text{total}}$$

Cabibbo Angle Anomaly

- ☐ At this level of precision, careful treatment of radiative QED corrections has become the frontier
 - ☐ Original Sirlin & Marciano et al approach
 - modern pheno and EFT treatments
 - □ lattice QCD + QED

First-row CKM Unitarity & Precision β decays

- $\square > 3\sigma$ tension is seen with $N_f = 2 + 1 + 1$
- \square less tension with $N_f = 2 + 1$

First-row CKM Unitarity & Precision β decays

The first row is showing robust tension — [some of the values in this estimate]
$$\Delta_{\text{CKM}} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1, \quad V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{\text{exp}}(13)_{\Delta_V^R}(27)_{\text{NS}}[32]_{\text{total}}$$

$$= -0.00176(56) \qquad V_{us}^{K_{\ell 3}} = 0.22330(35)_{\text{exp}}(39)_{f_+}(8)_{\text{IB}}[53]_{\text{total}}$$

Cabibbo Angle Anomaly

 \square Exciting prospects for neutron β -decay to match precision from superallowed alleviating the need for modeling the nuclear structure (NS) corrections

$$V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{\text{exp}}(13)_{\Delta_V^R}(27)_{\text{NS}}[32]_{\text{total}}$$

$$V_{ud}^{n,\text{PDG}} = 0.97441(3)_f(13)_{\Delta_V^R}(82)_{\lambda}(28)_{\tau_n}[88]_{\text{total}}$$

$$\lambda = g_A/g_V$$

$$V_{ud}^{n,\text{best}} = 0.97413(3)_f(13)_{\Delta_V^R}(35)_{\lambda}(20)_{\tau_n}[43]_{\text{total}}$$

 \square Reaching target precision requires improving the uncertainty from radiative QED corrections, in particular, Δ_V^R

$$\Gamma_{n} = \frac{G_{F}^{2} |V_{ud}|^{2} m_{e}^{5}}{2\pi^{3}} (1 + 3\lambda_{\text{PDG}}^{2}) f_{0} (1 + \Delta_{f}) (1 + \Delta_{V}^{R})$$

$$\lambda_{\text{PDG}} = \lambda_{\text{exp}} - \Delta_{A}^{R, \text{Sirlin, analytic}} = \lambda_{\text{QCD-iso}} + \Delta_{A}^{R, \text{other}}$$

$$\Delta_{A}^{R, \text{other}} \simeq O(2\%) \qquad \Delta_{A}^{R, \text{other}} = \text{QED correction to } g_{A}$$

- \square We compare our LQCD calculations of $g_A^{\text{QCD-iso}}$ to g_A^{PDG}
- \square g_A^{PDG} is determined from an experimental measurement of $\lambda = g_A/g_V$ after some analytic long-distance QED effects are subtracted see Hayen & Young, 2009.11364 for discussion

$$g_A^{\text{PDG}} = g_A^{\text{QCD-iso}} + \Delta_A^{R,other}$$

☐ But it turns out - potentially significant low-energy nucleon structure corrections may spoil this comparison

$$\Delta_A^{R,other} \simeq \mathcal{O}(2\%)$$

- \square We compare our LQCD calculations of $g_A^{\text{QCD-iso}}$ to g_A^{PDG}
- \square g_A^{PDG} is determined from an experimental measurement of $\lambda = g_A/g_V$ after some analytic long-distance QED effects are subtracted see Hayen & Young, 2009.11364 for discussion

$$g_A^{\text{PDG}} = g_A^{\text{QCD-iso}} + \Delta_A^{R,other}$$

☐ But it turns out - potentially significant low-energy nucleon structure corrections may spoil this comparison

$$\Delta_A^{R,other} \simeq \mathcal{O}(2\%)$$

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

 \square Systematic, EFT treatment of neutron β -decay

The parameters can be measured

$$\frac{d\Gamma}{dE_e d\Omega_e d\Omega_{\nu}} = \frac{(G_F V_{ud})^2}{(2\pi)^5} (1 + 3\lambda^2) w(E_e)
\times \left[1 + \bar{a}(\lambda) \frac{\vec{p}_e \cdot \vec{p}_{\nu}}{E_e E_{\nu}} + \bar{A}(\lambda) \frac{\vec{\sigma}_n \cdot \vec{p}_e}{E_e} + \dots \right]$$

If we want to connect them to Standard Model (SM) parameters we need to start from a Lagrangian with parameters related to SM parameters

pion-less low-energy EFT

$$\lambda = \frac{g_A}{g_V}$$

$$\mathcal{L}_{\#} = -\sqrt{2}G_{F}V_{ud} \left[\bar{e}\gamma_{\mu}P_{L}\nu_{e} \left(\bar{N} \left(g_{V}v_{\mu} - 2g_{A}S_{\mu} \right) \tau^{+} N \right) \right. \\
+ \frac{i}{2m_{N}} \bar{N} \left(v^{\mu}v^{\nu} - g^{\mu\nu} - 2g_{A}v^{\mu}S^{\nu} \right) \left(\overleftarrow{\partial} - \overrightarrow{\partial} \right)_{\nu} \tau^{+} N \right) \\
+ \frac{ic_{T}m_{e}}{m_{N}} \bar{N} \left(S^{\mu}v^{\nu} - S^{\nu}v^{\mu} \right) \tau^{+} N \left(\bar{e}\sigma_{\mu\nu}P_{L}\nu \right) \\
+ \frac{i\mu_{\text{weak}}}{m_{N}} \bar{N} [S^{\mu}, S^{\nu}] \tau^{+} N \partial_{\nu} \left(\bar{e}\gamma_{\mu}P_{L}\nu \right) \right] + \dots \tag{2}$$

Perform the calculation with SU(2) heavy-baryon χPT and match the results to this pion-less EFT whose parameters can be matched to experimentally measured quantities

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

☐ Sub-set of O(50) diagrams

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

a2)

☐ Sub-set of O(50) diagrams

photons

pions

pion electromagnetic mass splitting $m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$

$$m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$$

b2)

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

☐ Sub-set of O(50) diagrams

photons

pions

pion electromagnetic mass splitting $m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$

NOTE: at this order, we also include QED, m_d - m_u corrections to M_n - M_p

 \square iso-vector contributions to M_n - M_p vanish from symmetry constraints for τ^+ current \square iso-scalar contributions do not vanish - but the sum of all of them does vanish through NLO

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

Matching

$$\lambda - g_A^{\rm QCD} \left(1 + \delta_{\rm RC}^{(\lambda)} - 2 \operatorname{Re}(\epsilon_R) \right) \qquad \delta_{\rm RC}^{(\lambda)} = \frac{\alpha}{2\pi} \left(\Delta_{A, \text{em}}^{(0)} + \Delta_{A, \text{em}}^{(1)} - \Delta_{V \text{em}}^{(0)} \right)$$

$$g_{V/A} = g_{V/A}^{(0)} \left[1 + \sum_{n=2}^{\infty} \Delta_{V/A,\chi}^{(n)} + \frac{\alpha}{2\pi} \sum_{n=0}^{\infty} \Delta_{V/A,\text{em}}^{(n)} + \left(\frac{m_u - m_d}{\Lambda_{\chi}} \right)^{n_{V/A}} \sum_{n=0}^{\infty} \Delta_{V/A,\delta m}^{(n)} \right]$$

$$m_V = 2 \qquad n_A = 1$$

$$\text{CVC} \qquad \text{explicit calculation: } \Delta_{A,\delta m}^{(0),(1)} = 0$$

$$\Delta_{V,\delta m}^{(0)} = 0$$

$$\Delta_{A,\text{em}}^{(0)} = Z_{\pi} \left[\frac{1 + 3g_A^{(0)2}}{2} \left(\log \frac{\mu^2}{m_{\pi}^2} - 1 \right) - g_A^{(0)2} \right] + \hat{C}_A(\mu)$$
 Low-Energy-Constants (LECs)

$$\Delta_{A,\text{em}}^{(1)} = Z_{\pi} 4\pi m_{\pi} \left[c_4 - c_3 + \frac{3}{8m_N} + \frac{9}{16m_N} g_A^{(0)2} \right]$$
 C_A(\(\mu\)) - completely unknown c₃ & c₄ are estimated from literature

Using Naive Dimensional Analysis (NDA) to estimate $C_A(\mu)$ and $c_{3,4}$ from the literature $\delta_{RC}^{(\lambda)} \in \{1.4,2.6\} \cdot 10^{-2}$ an order of magnitude larger than previous estimates

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

☐ Sub-set of O(50) diagrams

photons

pions

pion electromagnetic mass splitting

$$m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$$

Low-Energy-Constants (LECs)

$$g_A^{\text{PDG}} = g_A^{\text{QCD-iso}} + \delta_{\text{RC}}^{(\lambda)}(\alpha_{fs}, \hat{C}_A(\mu), \dots)$$

 $\delta_{\text{RC}}^{(\lambda)} \in \{1.4, 2.6\} \cdot 10^{-2}$

- \square seems to move g_A^{QCD} towards g_A^{\exp}
- \square need LQCD+QED calculation to determine $\delta_{\rm RC}^{(\lambda)}$

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

- \square An O(2%) QED correction to g_A was estimated with χ PT
 - Assume γPT is at least qualitatively correct (if not accurate)
 (no significant cancellation between analytic terms and LECs)
- \square In order to compare LQCD results of g_A to experiment, this QED correction MUST be determined LQCD + QED is the only way
 - ☐ It is a scheme (and possibly QED-gauge) dependent quantity
- \Box This correction does NOT impact extraction of V_{ud} —it is a "right handed" correction
 - \square The λ in Γ is the same as in beta-assymetry (A)
- ☐ It does prevent us from using LQCD to constrain BSM right-handed currents better than a few percent

$$\frac{d\Gamma}{dE_e d\Omega_e d\Omega_{\nu}} = \frac{(G_F V_{ud})^2}{(2\pi)^5} (1 + 3\lambda^2) w(E_e)$$

$$\times \left[1 + \bar{a}(\lambda) \frac{\vec{p}_e \cdot \vec{p}_{\nu}}{E_e E_{\nu}} + \bar{A}(\lambda) \frac{\vec{\sigma}_n \cdot \vec{p}_e}{E_e} + \dots \right]$$

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

- \square An O(2%) QED correction to g_A was estimated with χ PT
 - Assume χPT is at least qualitatively correct (if not accomposition of the significant cancellation between analytic terms and the significant cancellation between analytic terms are significant.
- □ In order to compare LQCD results of g_A to experiment, determined LQCD + QED is the only way
 - ☐ It is a scheme (and possibly QED-gauge) dependent of
- \square This correction does NOT impact extraction of V_{ud} i
 - \square The λ in Γ is the same as in beta-assymetry (A)
- ☐ It does prevent us from using LQCD to constrain BSM right-handed currents better than a few percent

Cirigliano, de Vries, Hayen, Mereghetti & Walker-Loud, PRL 129 (2022) [2202.10439]

- \square An O(2%) QED correction to g_A was estimated with χ PT
 - Assume γPT is at least qualitatively correct (if not accomo significant cancellation between analytic terms an
- \square In order to compare LQCD results of g_A to experiment, determined LQCD + QED is the only way
 - ☐ It is a scheme (and possibly QED-gauge) dependent of
- \square This correction does NOT impact extraction of V_{ud} —i $\stackrel{>}{\sim}$
 - \square The λ in Γ is the same as in beta-assymetry (A)
- ☐ It does prevent us from using LQCD to constrain BSM right-handed currents better than a few percent

What is the issue?
We (the LQCD community) think of FV corrections in the asymptotic scaling regime
We have numerical evidence that the sign of the FV correction depends upon m_{π}
We have qualitative evidence that the sign of FV corrections at $m_\pi \approx 300$ MeV is not the same as at $m_\pi^{\rm phys}$
We have qualitative evidence that the sign of the FV corrections can change
\square at fixed $m_{\pi}L$ as one varies m_{π}
\square at fixed m_{π} as one varies $m_{\pi}L$
We should not find this surprising, after all, for nucleon quantities

Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti, H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — In preparation

☐ Numerical Evidence:

- \Box At $m_{\pi} \approx 220$ MeV, results are consistent with leading prediction from χPT (and also consistent with no correction or opposite sign)
- \square At $m_{\pi} \approx 300$ MeV, results constrain the sign of the volume correction opposite of χPT prediction

Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti, H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — In preparation

\square Expectations from χPT

- The chiral expansion for nucleons is a series in $\epsilon_{\pi} = \frac{m_{\pi}}{4\pi F_{\pi}}$, while for pions, it is in ϵ_{π}^2
 - Therefore, higher order corrections are relatively more important
- \square The nucleon has a much richer spectrum of virtual excited states $(N\pi, \Delta\pi, \dots)$
- \square In the large N_c limit, there is an exact cancellation of most NLO corrections to g_A
 - \square The finite volume corrections also respect this cancellation and lead to a sign change at fixed m_{π} vs $m_{\pi}L$
- □ SU(2) HBχPT(Δ) at NNLO also predicts change in sign of FV corrections

Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti, H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — In preparation

\square Expectations from χPT

D SU(2) HBχPT(Δ) at NNLO also predicts change in sign of FV corrections

$$g_A = g_0 + \Delta^{(2)} + \delta_{FV}^{(2)} + \Delta^{(3)} + \delta_{FV}^{(3)}$$

$$\delta_{\text{FV}}^{(2)} = \frac{8}{3} \epsilon_{\pi}^2 \left[g_0^3 F_1^{(2)}(m_{\pi} L) + g_0 F_3^{(2)}(m_{\pi} L) \right]$$

$$F_1^{(2)}(x) = \sum_{\vec{n} \neq 0} \left[K_0(x|\vec{n}|) - \frac{K_1(x|\vec{n}|)}{x|\vec{n}|} \right]$$

$$F_3^{(2)}(x) = -\frac{3}{2} \sum_{\vec{n} \neq 0} \frac{K_1(x|\vec{n}|)}{x|\vec{n}|},$$

$$\begin{array}{c} \Delta^{(2)} = \epsilon_{\pi}^{2} \left[-g_{0}(1+2g_{0}^{2}) \ln \epsilon_{\pi}^{2} + 4\tilde{d}_{16}^{r} - g_{0}^{3} \right]_{1.29} \\ \Delta^{(3)} = \epsilon_{\pi}^{3} g_{0} \frac{2\pi}{3} \left[3(1+g_{0}^{2}) \frac{4\pi F}{M_{0}} + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right]_{1.27} \\ \delta^{(3)}_{\text{FV}} = \epsilon_{\pi}^{3} g_{0} \frac{2\pi}{3} \left\{ g_{0}^{2} \frac{4\pi F}{M_{0}} F_{1}^{(3)}(m_{\pi}L) \right. \\ \left. \begin{array}{c} \delta^{(3)}_{\text{FV}} = \epsilon_{\pi}^{3} g_{0} \frac{2\pi}{3} \left\{ g_{0}^{2} \frac{4\pi F}{M_{0}} F_{1}^{(3)}(m_{\pi}L) \right. \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(4)}(m_{\pi}L) \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}} (3+2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(4)}(m_{\pi}L) \right\} \\ \left. \begin{array}{c} \left[\frac{4\pi F}{M_{0}$$

Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti, H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — In preparation

\square Expectations from χPT

□ SU(2) HBχPT(Δ) at NNLO also predicts change in sign of FV corrections

$$g_A = g_0 + \Delta^{(2)} + \delta_{FV}^{(2)} + \Delta^{(3)} + \delta_{FV}^{(3)}$$
$$\delta_{FV}^{(2)} = \frac{8}{3} \epsilon_{\pi}^2 \left[g_0^3 F_1^{(2)}(m_{\pi} L) + g_0 F_3^{(2)}(m_{\pi} L) \right]$$

 $\Delta^{(2)} = \epsilon_{\pi}^{2} \left[-g_{0}(1 + 2g_{0}^{2}) \ln \epsilon_{\pi}^{2} + 4\tilde{d}_{16}^{r} - g_{0}^{3} \right]$ $\Delta^{(3)} = \epsilon_{\pi}^{3} g_{0} \frac{2\pi}{3} \left[3(1 + g_{0}^{2}) \frac{4\pi F}{M_{0}} + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right]$

NOTE: the leading FV correction is a prediction g_0 is determined in the chiral extrapolation

for
$$g_0 \sim 1.2$$
, $\delta_{FV}^{(2)} > 0$

$$F_1^{(2)}(x) = \sum_{\vec{n} \neq 0} \left[K_0(x|\vec{n}|) - \frac{K_1(x|\vec{n}|)}{x|\vec{n}|} \right]$$

$$F_3^{(2)}(x) = -\frac{3}{2} \sum_{\vec{n} \neq 0} \frac{K_1(x|\vec{n}|)}{x|\vec{n}|},$$

Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti, H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — In preparation

\square Expectations from χPT

□ SU(2) HBχPT(Δ) at NNLO also predicts change in sign of FV corrections

$$g_{A} = g_{0} + \Delta^{(2)} + \delta_{FV}^{(2)} + \Delta^{(3)} + \delta_{FV}^{(3)}$$

$$\delta_{FV}^{(3)} = \epsilon_{\pi}^{3} g_{0} \frac{2\pi}{3} \left\{ g_{0}^{2} \frac{4\pi F}{M_{0}} F_{1}^{(3)}(m_{\pi}L) - \left[\frac{4\pi F}{M_{0}} (3 + 2g_{0}^{2}) + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right] F_{3}^{(3)}(m_{\pi}L) \right\}$$

$$\tilde{c}_{i} = (4\pi F) c_{i}$$

in SU(2) HB χ PT(χ), with N³LO $N\pi$ phase shift analysis Siemens et al, 1610.08978

$$c_3 = -5.60(6) \text{ GeV}^{-1}$$

 $c_4 = 4.26(4) \text{ GeV}^{-1}$

$$\Delta^{(2)} = \epsilon_{\pi}^{2} \left[-g_{0}(1 + 2g_{0}^{2}) \ln \epsilon_{\pi}^{2} + 4\tilde{d}_{16}^{r} - g_{0}^{3} \right]$$

$$\Delta^{(3)} = \epsilon_{\pi}^{3} g_{0} \frac{2\pi}{3} \left[3(1 + g_{0}^{2}) \frac{4\pi F}{M_{0}} + 4(2\tilde{c}_{4} - \tilde{c}_{3}) \right]$$

$$F_{1}^{(3)}(x) = \sum_{\vec{n} \neq \vec{0}} \frac{K_{\frac{1}{2}}(x|\vec{n}|)}{\sqrt{\frac{\pi}{2}x|\vec{n}|}} x|\vec{n}| \qquad = \sum_{\vec{n} \neq \vec{0}} e^{-x|\vec{n}|}$$

$$F_{3}^{(3)}(x) = \sum_{\vec{n} \neq \vec{0}} \frac{K_{\frac{1}{2}}(x|\vec{n}|)}{\sqrt{\frac{\pi}{2}x|\vec{n}|}} \qquad = \sum_{\vec{n} \neq \vec{0}} \frac{e^{-x|\vec{n}|}}{x|\vec{n}|}$$

This leads to LARGE, negative FV correction Fitting $2c_4 - c_3$ to our LQCD results yields a value $\sim 10 \times \text{smaller}$ —leads to change in sign of δ_{FV} as function of m_{π}

Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti,

H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — In preparation

take asymptotic form of Bessel functions and leading "wrap around the world" mode and only leading volume correction

1.28 a = 0.06

- \square Fit c_2 essentially to heavy m_{π} results
- Use this m_{π} -independent value of c_2 to extrapolate to infinite volume at all m_{π}
- If the volume corrections do change sign (to agree with χPT prediction close to m_{π}^{phys}) the current strategy will lead to an error
- ☐ At what precision will this occur?

L [fm]

- ☐ What should we do?
 - One needs to perform a volume study at multiple pion masses with sufficient precision to constrain the sign of the volume correction as a function of m_{π}

$$g_A(L) = g_A + c_2 \frac{m_\pi^2}{(4\pi F_\pi)^2} \frac{e^{-m_\pi L}}{\sqrt{m_\pi L}} + c_3 \frac{m_\pi^3}{(4\pi F_\pi)^3} \frac{e^{-m_\pi L}}{m_\pi L} + \cdots$$

- \square Or we need to rely only upon $m_{\pi} \approx m_{\pi}^{\text{phys}}$ with sufficient precision to control the final uncertainty of g_A as well as the volume correction
- \square Or determine quantitatively that some variant of HB χ PT provides an accurate description of both the m_{π} dependence as well as $m_{\pi}L$ dependence

- \square "But you just told me there is an unknown O(2%) QED correction to g_A , so why should I care?"
 - Presumably, we will figure out how to determine this QED correction, which will allow us to utilize our high-precision iso-symmetric LQCD determination of g_A by applying the QED correction in a correlated way

- \square "But you just told me there is an unknown O(2%) QED correction to g_A , so why should I care?"
 - Presumably, we will figure out how to determine this QED correction, which will allow us to utilize our high-precision iso-symmetric LQCD determination of g_A by applying the QED correction in a correlated way
 - Comparing $g_A^{\rm QCD}$ to $g_A^{\rm PDG}$ including control of $\Delta_A^{R,other}$, allows us to constrain BSM right-handed currents

- ☐ There is tension in the first-row CKM unitarity,
 - □ BSM right-handed currents offer a favored solution to the tension
 - \square LQCD calculation of g_A , plus radiative QED corrections, provides such a constraint
- \Box estimates from χ PT suggests $\Delta_A^{R,other} = O(2\%), g_A^{PDG} = g_A^{QCD-iso} + \Delta_A^{R,other}$
- \square g_A seems to exhibit non-monotonic FV corrections
 - As the precision of results improves, the current strategy of most groups

$$g_A(L) = g_A + c_2 \frac{m_\pi^2}{(4\pi F_\pi)^2} \frac{e^{-m_\pi L}}{\sqrt{m_\pi L}}$$

will lead to an error

☐ At what precision of results will this become important?

Thank You