Study of Chiral Symmetry and $U(1)_A$ using Spatial Correlations for $N_f = 2$ QCD at finite temperature with Domain Wall Fermions

David Ward¹ S. Aoki, Y. Aoki, H. Fukaya, S. Hashimoto, I.Kanamori, T. Kaneko, Y. Nakamura, K. Suzuki – JLQCD Collaboration

¹Department of Physics Osaka University

August 1, 2024

Table of Contents

Introduction

- Overview
- Updated $N_f = 2$ data and simulation parameters

2 Simulation and Determination of Effective Mass

- Simulation Parameters
- Symmetry Relationships

Spatial Correlations and Symmetries on the lattice

- Effective Mass Curves and Fitted Mass Determination
- Correlator Temperature Spectrum
- Correlator Symmetries
- Checks on Systematics and Model

Conclusion

Acknowledgements

All of this work was done on the following: Fugaku (hp200130, hp210165, hp210231, hp220279, hp230323) Oakforest-PACS HPCI projects : [hp170061, hp180061, hp190090, hp200086, hp210104, hp220093, hp230090] MCRP in CCS U. Tsukuba : xg17i032 and xg18i023 Wistoria (PDEC 01 [UDCh hp220003, MCPD, up220020]

Wisteria/BDEC-01 [HPCI: hp220093, MCRP: wo22i038]

Motivation

This talk focuses on symmetries of $N_f = 2$ QCD at temperatures around the critical point through screening mass differences of the mesonic spatial correlators.

- JLQCD simulates $N_f = 2$ QCD with Möbius domain-wall fermions with $m_{res} < 1$ MeV. This approach is theoretically clean with well defined chiral $SU(2)_L \times SU(2)_R$ and axial $U(1)_A$ symmetries.
- Previous work done by JLQCD [Rohrhofer 2020] focused on temperatures above $1.1T_c$.
- This talk will focus on work with $0.9T_c$ and T_c added.

Symmetries of QCD and Chiral phase transition

• Below T_c , $\langle \bar{q}q(x) \rangle \neq 0$ indicating a broken $SU(2)_L \times SU(2)_R$ symmetry. While $U_A(1)$ is broken by anomaly.

• Above T_c , $\langle \bar{q}q(x) \rangle = 0$ "chiral" symmetry is restored.

• Möbius Domain Wall fermions are defined by the kernel operator $H = \frac{\gamma_5 D_w}{2 + \gamma_5 D_w}$ in approximation $\epsilon(H)$ of the sgn(H) in the domain wall operator

$$D_{OV} = \frac{1+m}{2} + \frac{1-m}{2}\gamma_5\epsilon(H).$$

Where the sign function is approximated to be tanh-like

$$\epsilon(H) = rac{(H+1)^{L_s} - (H-1)^{L_s}}{(H+1)^{L_s} + (H-1)^{L_s}} = anh(L_s anh^{-1}(H)).$$

 L_s is the extent of the fifth dimension.

• Approximation of the sign function combined using the MWDF operator increases suppression of the lattice artifact with $m_{res} \sim 1 {\rm MeV}$.

Mesonic Correlators

• We consider the flavor triplet bilinear quark operators:

$$O(x) = \bar{q}(x)(\Gamma \otimes \frac{ec{ au}}{2})q(x).$$

Here τ^a is an element of the generators of SU(2).

• We measure the spatial correlator through:

$$C_{\Gamma}(z) = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \int_{0}^{\beta} d\tau \left\langle O_{\Gamma}(z, x, y, \tau) O_{\Gamma}^{\dagger}(0) \right\rangle$$

On the lattice this becomes

$$C_{\Gamma}(n_z) = \sum_{n_y, n_x, n_t} \left\langle O_{\Gamma}(n_z, n_x, n_y, n_t) O_{\Gamma}^{\dagger}(0, 0, 0, 0) \right\rangle.$$

August 1, 2024

Г	Reference Name	Abbr.	Symmetry Correspondences		
$ I \\ \gamma_5 \\ \gamma_k \\ \gamma_k \gamma_5 \\ \gamma_k \gamma_3 \\ \gamma_k \gamma_3 \gamma_5 $	Scalar Psuedo Scalar Vector Axial Vector Tensor Axial Tensor	S PS V A T X	$iggree U(1)_A \ iggree SU(2)_L imes SU(2)_R \ iggree U(1)_A \ iggreee U(1)_A \ iggree U(1)_A \ iggree U(1)_A \ iggr$	$\left. \right\} SU(2)_{CS}?$	

• $O(x) = \bar{q}(x)(\Gamma \otimes \frac{\tau}{2})q(x)$

• For our purpose we will fix to spatial mesonic correlation functions along the z-axis and study the screening masses.

$$\langle O(t)O(0)
angle
ightarrow \langle O(z)O(0)
angle$$

Updates to $N_f = 2$ simulations

- Two new temperatures $T = 146 \text{MeV} \approx 0.9 T_c$ and $T = 165 \text{MeV} \approx T_c$ have been added to the set of temperatures studied previously [JLQCD 2019].
- We simulate different volumes for each temperature: $32(N_s/N_{\tau} = 2)$, $40(N_s/N_{\tau} = 2.5)$ at T = 165MeV and $36(N_s/N_{\tau} = 2)$, $48(N_s/N_{\tau} = 2.6)$ at T = 146MeV.
- Spatial screening masses are determined from effective mass and fits.

Simulation Parameters

- N_f = 2 QCD with Möbius domain wall quarks with m_{res} < 1MeV and Symanzick gauge action.
- $L_s = 16$
- $a^{-1} = 2.640 \text{GeV}$
- L = 32 48 (2.40 3.60 fm)
- m_{ud} from \sim 2.6MeV to 13.2MeV(covering $m_{phys} \sim$ 4MeV)
- Temperature ranges from T = 146 MeV 330 MeV.
- psuedo T_c ~ 165MeV estimated by chiral susceptibility

$L^3 \times L_t$	β	T[MeV]	am	m[MeV]
36 ³ ×18	4.30	146	0.0010	2.6
			0.0050	13.2
$48^3 imes 18$	4.30	146	0.0010	2.6
			0.0050	13.2
$32^3 \times 16$	4.30	165	0.0010	2.6
			0.0050	13.2
$40^3 imes 16$	4.30	165	0.0010	2.6
			0.0050	13.2
$32^3 imes 14$	4.30	190	0.0010	2.6
			0.0050	13.2
$24^3 \times 12$	4.30	220	0.0010	2.6
			0.0100	26.4
$32^3 \times 12$	4.30	220	0.0010	2.6
			0.0100	26.4
$40^3 \times 12$	4.30	220	0.0050	13.2
			0.0100	26.4
$48^3 \times 12$	4.30	220	0.0010	2.6
			0.0050	13.2
$32^3 \times 10$	4.30	264	0.0050	13.2
			0.0150	39.6
32 ³ ×8	4.30	330	0.0010	2.6
			0.0400	106

Lattice 2024

Symmetries in high T QCD

August 1, 2024

Effective Mass and Fit

- We use the $\cosh(z)$ fitting ansatz.
- Previous work on $N_f = 2$ included the $\exp(z)/z$ fitting ansatz for $T > 1.1T_c$, at T_c and below we found this ansatz was no longer a good approximation.
- Symmetries examined from the difference in the screening masses between channels related by associated transformations. i.e.

For
$$SU(2)_L imes SU(2)_R$$
: $\Delta M = |m_{fit}^{A_X} - m_{fit}^{V_X}|$

For
$$U(1)_A$$
: $\Delta M = |m_{fit}^{PS} - m_{fit}^{S}|$
 $\Delta M = |m_{fit}^{Xt} - m_{fit}^{Tt}|$

For $SU(2)_{CS}$: $\Delta M = |m_{fit}^{V_X} - m_{fit}^{Xt}|$

QCD Symmetries Revisited

• Dashed and dotted lines represent respective isospin triplets related by $SU(2)_L \times SU(2)_R$ transformations.

• $SU(2)_{CS} \supset U(1)_A$ [Glozman 2015, Glozman and Pak 2015]

Lattice 2024

Emergence of $SU(2)_{CS}$ for heavy Matsubara frequency

For $\mathcal{T} \to \infty$ we expect the emergence of an additional symmetry.

• Beginning with the free quark Lagrangian:

$$\mathcal{L}=\bar{q}(x)(i\partial+m)q(x).$$

• The associated propagator in the z-direction with fixed p₂ and p₁:

$$\langle \bar{q}(z)q(0) \rangle (p_1, p_2) = \sum_{p_0} \int_{-\infty}^{\infty} \frac{dp_z}{(2\pi)} \frac{m - (i\gamma_0 p_0 + i\gamma_i p_i)}{p_0^2 + \delta_{ij} p_i p_j + m^2} e^{ip_3 z} \\ = \sum_{p_0} \frac{m + \gamma_3 E - i\gamma_0 p_0 - i\gamma_1 p_1 - i\gamma_2 p_2}{2E} e^{-Ez}$$

where
$$E = \sqrt{p_0^2 + m^2 + p_1^2 + p_2^2}$$
.

August 1, 2024

Emergence of $SU(2)_{CS}$ for heavy Matsubara frequency

For lattices with $T \gg m^2 + p_1^2 + p_2^2$ we can expand the propagator in terms of 1/T:

$$\langle \bar{q}(z)q(0) \rangle = \gamma_3 \frac{1+i \operatorname{sgn}(p_0)\gamma_0\gamma_3}{2} e^{-\pi T z} + \mathcal{O}(1/T)$$

This quark propagator is invariant under the set of transformations:

$$egin{array}{rcl} q(x) & o & e^{i\Sigma^{a} heta^{a}}q(x) \ ar{q}(x) & o & ar{q}(x)\gamma_{0}e^{i\Sigma^{a} heta^{a}}\gamma_{0} \end{array}$$

where

$$\boldsymbol{\Sigma} = \begin{bmatrix} \gamma_5 \\ \gamma_1 \\ \gamma_2 \end{bmatrix}$$

forms the so-called chiral spin $SU(2)_{CS}$ group [Glozman 2015, Glozman and Pak 2015, 2017, Rohrhofer et al. 2017,2019, 2020, Lattice 2019].

Lattice 2024

Symmetries in high T QCD

August 1, 2024

Effective Mass and Fit Range – $U(1)_A$

S

PS

Effective Mass and Fit Range – $SU(2)_L \times SU(2)_R$

Ax

August 1, 2024

Vx

Effective Mass and Fit Range – $U(1)_A$

Xt

Τt

Correlator Channel Temperature Spectrum

Symmetries in high T QCD

August 1, 2024

Correlator Channel Temperature Spectrum

 $m_{ud} = 2.6 \text{ MeV}$

Symmetries in high T QCD

August 1, 2024

Normalized Correlator Channel Temperature Spectrum

Symmetries in high T QCD

August 1, 2024

Normalized Correlator Channel Temperature Spectrum

Symmetries in high T QCD

August 1, 2024

$2\pi T$ convergence

• For the temperature dependent screening mass it is predicted that the high temperature limit of the spectrum tends toward an effective field theory correction[Laine et al. 2004].

$$\frac{m_{screen}}{2\pi T} = 1 + g^2 \frac{1}{3\pi^2} (1/2 + E_0) \approx 1 + 0.02980106477 g^2$$

- Previous work done by HotQCD has shown that temperatures *T* ≥ 2GeV do not converge to the predicted perturbative correction[HotQCD 2019].
- An improvement in the effective mass and fits at very high temperatures $\mathcal{O} \gtrsim 1$ GeV may be a version of the free two quark function $C(z) \sim \exp(-mz)/z$.

- At $T \sim 165$ MeV $SU(2)_L \times SU(2)_R$ is restored for the lightest mass 2.6MeV.
- Almost no fluctuations above T_c for all quark masses.
- For larger quark masses psuedo T_c appears to increase.

Lattice 2024

- At $T \sim 165$ MeV $SU(2)_L \times SU(2)_R$ is restored for the lightest mass 2.6MeV.
- Almost no fluctuations above T_c for all quark masses.
- For larger quark masses psuedo T_c appears to increase.

Lattice 2024

- At $T \sim 165$ MeV $SU(2)_L \times SU(2)_R$ is restored for the lightest mass 2.6MeV.
- Almost no fluctuations above T_c for all quark masses.
- For larger quark masses psuedo T_c appears to increase.

Lattice 2024

- At $T \sim 165$ MeV $SU(2)_L \times SU(2)_R$ is restored for the lightest mass 2.6MeV.
- Almost no fluctuations above T_c for all quark masses.
- For larger quark masses psuedo T_c appears to increase.

Lattice 2024

- At $T \sim 165$ MeV $SU(2)_L \times SU(2)_R$ is restored for the lightest mass 2.6MeV.
- Almost no fluctuations above T_c for all quark masses.
- For larger quark masses psuedo T_c appears to increase.

Lattice 2024

- Similar to $SU(2)_L \times SU(2)_R$ at am = 0.0010. $U(1)_A$ appears to be "restored" for $T \sim T_c$.
- Xt Tt also has no fluctuations for quarks which have undergone transition.
- As with SU(2)_L × SU(2)_R there is an increase in the critical temperature corresponding to increased mass.

- Similar to $SU(2)_L \times SU(2)_R$ at am = 0.0010. $U(1)_A$ appears to be "restored" for $T \sim T_c$.
- Xt Tt also has no fluctuations for quarks which have undergone transition.
- As with SU(2)_L × SU(2)_R there is an increase in the critical temperature corresponding to increased mass.

- Similar to $SU(2)_L \times SU(2)_R$ at am = 0.0010. $U(1)_A$ appears to be "restored" for $T \sim T_c$.
- Xt Tt also has no fluctuations for quarks which have undergone transition.
- As with SU(2)_L × SU(2)_R there is an increase in the critical temperature corresponding to increased mass.

- Similar to $SU(2)_L \times SU(2)_R$ at am = 0.0010. $U(1)_A$ appears to be "restored" for $T \sim T_c$.
- Xt Tt also has no fluctuations for quarks which have undergone transition.
- As with SU(2)_L × SU(2)_R there is an increase in the critical temperature corresponding to increased mass.

- Similar to $SU(2)_L \times SU(2)_R$ at am = 0.0010. $U(1)_A$ appears to be "restored" for $T \sim T_c$.
- Xt Tt also has no fluctuations for quarks which have undergone transition.
- As with SU(2)_L × SU(2)_R there is an increase in the critical temperature corresponding to increased mass.

$U(1)_A$ symmetry through PS - S

• PS - S shows the same behaviors as Xt - Tt and mirrors behaviors in $SU(2)_L \times SU(2)_R$ but is significantly more noisy due to scalar channel noise.

Lattice 2024

$SU(2)_{CS}$ symmetry

- Noise reduces greatly upon cross over of T_c , however, mass difference for both Vx Xt and Ax Xt remain nonzero.
- Potentially at higher temperatures a restoration of SU(2)_{CS} may occur.

Lattice 2024

Checking Systematics

- At temperatures around *T_c* we measure several lattices with difference spatial volumes to eliminate finite size effects.
- Simulations done with Möbius domain wall fermions introduce an automatic $\mathcal{O}(a)$ improvement in measured values.
- For symmetries such as SU(2)_L × SU(2)_R and U_A(1) we consider dynamical fermions with a mass range from 2.6MeV ~ 6.6MeV.

Conclusions

- From our N = 2 lattice QCD simulations with Möbius domain wall fermions, we can see that screening masses are consistent with the T = 0 meson spectrum already at $0.9T_c$.
- Likewise, at high temperatures the screening mass approaches $2\pi T$.
- At $T_c \sim 165$ MeV we observe restoration of both $SU(2)_L \times SU(2)_R$ as well as $U_A(1)$.
- $SU(2)_{CS}$ is quite clean of noise at high temperatures but appears to remain broken up to 330 MeV.