
1

Rearchitecting QUDA for multi-RHS computations
Kate Clark

Lattice 2024

Bálint Joó, Jiqun Tu, Mathias Wagner, Evan Weinberg

2

Motivation
HPC is Trending

• Three performance limiter trends are apparent in High Performance Computing

• Memory bandwidth limited

• Parallelism Limited

• Energy Limited (more recent)

• This work seeks to address all of these limiters

• (Results are extremely preliminary)

3

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU

backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc. Provides solvers for
all major fermionic discretizations, with multi-GPU support

• Maximize performance
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Multigrid solvers for optimal convergence
– NVSHMEM for improving strong scaling

• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)
• A research tool for how to reach the exascale (and beyond)

– Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmarks apps

!9

QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (C++14, open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, etc.
• Various solvers for all major fermionic discretizations, with multi-GPU support
• Maximize performance

– Mixed-precision methods (runtime specification of precision for maximum flexibility)
– Exploit physical symmetries to minimize memory traffic
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multi-RHS solvers
– Multigrid solvers for optimal convergence

• A research tool for how to reach the exascale (and beyond)

4

QUDA CONTRIBUTORS

 Buck Babich (NVIDIA)
 Simone Bacchio (Cyprus)
 Michael Balfhauf (Regensburg)
 Kip Barros (LANL)
 Rich Brower (Boston University)
 Nuno Cardoso (NCSA)
 Kate Clark (NVIDIA)
 Michael Cheng (Boston University)
 Carleton DeTar (Utah University)
 Justin Foley (Utah -> NIH)
 Joel Giedt (Rensselaer Polytechnic Institute)
 Arjun Gambhir (William and Mary)
 Marco Garofalo (Bonn)
 Steve Gottlieb (Indiana University)
 Kyriakos Hadjiyiannakou (Cyprus)

Ben Hoerz (Intel)
 Dean Howarth (LBL)
 Xiangyu Jiang (ITP, Chinese Academy of Sciences)
 Xiao-Yong Jin (ANL)
 Bálint Joó (Jlab)
 Hyung-Jin Kim (BNL -> Samsung)

 Bartek Kostrzewa (Bonn)
 Damon McDougall (AMD)
 Colin Morningstar (CMU)
 James Osborn (ANL)
 Ferenc Pittler (Cyprus)
 Claudio Rebbi (Boston University)
 Eloy Romero (William and Mary)
 Hauke Sandmeyer (Bielefeld)
 Aniket Sen (Bonn)
 Guochun Shi (NCSA -> Google)
 Mario Schröck (INFN)
 Alexei Strelchenko (FNAL)
 Jiqun Tu (NVIDIA)
 Alejandro Vaquero (Utah University)
 Michael Wagman (FNAL)
 Mathias Wagner (NVIDIA)
 André Walker-Loud (LBL)
 Evan Weinberg (NVIDIA)
 Frank Winter (Jlab)
 Yi-bo Yang (CAS)

10+ years - lots of contributors

5

MAPPING THE DIRAC OPERATOR TO GPUS

• Finite difference operator in LQCD is known as Dslash
• Assign a single space-time point to each thread

V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must
– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x

x

x−

x−

U x

U
x

μ

μ

ν

X[0]

X[1]

6

PARALLELISM ISN’T INFINITE
Wilson-clover stencil (Chroma, A100-80)

NVIDIA A100,
CUDA 11.1,
GCC 11.5

~2400 GB/s

~2700 GB/s

~2700 GB/s

G
FL

O
PS

0

1500

3000

4500

6000

L

8 12 16 20 24 28 32 36 40

half single double

strong scaling

6

PARALLELISM ISN’T INFINITE
Wilson-clover stencil (Chroma, A100-80)

NVIDIA A100,
CUDA 11.1,
GCC 11.5

~2400 GB/s

~2700 GB/s

~2700 GB/s

G
FL

O
PS

0

1500

3000

4500

6000

L

8 12 16 20 24 28 32 36 40

half single double

strong scaling

smallest reasonable
problem size

7

MULTIGRID IS EVEN WORSE

G
FL

O
PS

0

400

800

1200

1600

Lattice length
2 4 6 8 10

Kepler Maxwell Pascal Volta Ampere

Gets harder with every generation

Latency limited Bandwidth limited

Coarse operator performance

8

Energy Efficiency Drives Locality

20mm

64-bit DP

28nm IC

20 pJ

8

Energy Efficiency Drives Locality

20mm

64-bit DP

28nm IC

256-bit access
8 kB SRAM 50 pJ

20 pJ

8

Energy Efficiency Drives Locality

20mm

64-bit DP

28nm IC

256-bit access
8 kB SRAM 50 pJ

20 pJ 26 pJ 256 pJ

256
bits

8

Energy Efficiency Drives Locality

20mm

64-bit DP

1000 pJ

28nm IC

256-bit access
8 kB SRAM 50 pJ

20 pJ 26 pJ 256 pJ

256
bits

8

Energy Efficiency Drives Locality

20mm

64-bit DP

1000 pJ

28nm IC

256-bit access
8 kB SRAM 50 pJ

16000 pJ DRAM Rd/Wr

500 pJ Efficient off-chip link

20 pJ 26 pJ 256 pJ

256
bits

9

Locality Drives Energy Efficiency

1

10

100

1000

10000

100000

1000000

FMA Registers L1 L2 HBM network

pi
co
Jo
ul
es

10

MULTI RHS IS (SOME OF) THE SOLUTION
Locality, Parallelism, Energy

• Batch multiple RHS computation in a single kernel

• Memory traffic reduction

• Gauge field load is shared across multiple RHS

• Gauge field remains in cache after first touch

• Traffic reduces as

• Parallelism scales with number of RHS

• Energy reduces with decreased memory traffic

• Power may go up due to faster rate of computation

• Actual power efficiency will increase

1
Nrhs

10

MULTI RHS IS (SOME OF) THE SOLUTION
Locality, Parallelism, Energy

G
FL

O
PS

0

1000

2000

3000

4000

Number of right hand sides

1 3 5 7 9 11 13 15

2^4 4^4

Volta

Multi-RHS Coarse Dslash perf
• Batch multiple RHS computation in a single kernel

• Memory traffic reduction

• Gauge field load is shared across multiple RHS

• Gauge field remains in cache after first touch

• Traffic reduces as

• Parallelism scales with number of RHS

• Energy reduces with decreased memory traffic

• Power may go up due to faster rate of computation

• Actual power efficiency will increase

1
Nrhs

11

Rearchitecting for MRHS

• Previously deployed block CG for staggered fermions in QUDA arXiv:1710.09745

• Convenient to consider MRHS dimension as an “extra dimension” from architectural point of view

• However restricts algorithmic flexibility, e.g., accessing subsets

• Not suitable for library wide deployment

• Algorithmically might prefer to have a std::vector<ColorSpinorField>

• Avoids requiring contiguous memory allocations

• Disjoint communication buffers however would cause a significant latency overhead for halo communication

• Arbitrary subsets will incur move / copy overheads

• Historically some of QUDA used std::vector<ColorSpinorField*>

• No overhead for subsets, etc

• Not desirable to rearchitect QUDA around passing raw pointers

12

Rearchitecting for MRHS

• Use std::vector<std::reference_wrapper<ColorSpinorField>> as the interface for all MRHS kernels?

• Non-ownership of the fields

• Zero overhead for taking subsets, supersets, etc.

• Extend std::vector to make it fit for purpose

• ColorSpinorField methods available directly from vector<std::reference_wrapper<ColorSpinorField>>

• e.g., querying the number of colors

• Provides opportunity for set uniformity, parameter checking etc.

• Auto construction of a vector container if a singleton is passed in

• Compatibility with legacy code

• Use a single halo accessor for all RHS

• Map RHS dimension to extra dimension for communication

• All communication code, NVSHMEM etc., just works

13

Kernel Architecture
Wilson Dslash

 if (doHalo<kernel_type>(d) && ghost) {
 // we need to compute the face index if we are updating a face that isn't ours
 const int ghost_idx = (kernel_type == EXTERIOR_KERNEL_ALL && d != thread_dim) ?
 ghostFaceIndex<1, Arg::nDim>(coord, arg.dim, d, arg.nFace) : idx;

 Link U = arg.U(d, gauge_idx, gauge_parity);
 HalfVector in = arg.halo.Ghost(d, 1, ghost_idx + (src_idx * arg.Ls + coord.s) * arg.dc.ghostFaceCB[d],
 their_spinor_parity);

 out += fwd_coeff * (U * in).reconstruct(d, proj_dir);
 } else if (doBulk<kernel_type>() && !ghost) {

 Link U = arg.U(d, gauge_idx, gauge_parity);
 Vector in = arg.in[src_idx](fwd_idx + coord.s * arg.dc.volume_4d_cb, their_spinor_parity);

 out += fwd_coeff * (U * in.project(d, proj_dir)).reconstruct(d, proj_dir);
 }

Forward derivative term

Single ghost buffer shared by all RHS
RHS index maps to the 5th dimension

Separate accessor for each RHS
RHS index maps to the accessor index

 template <typename Float, int nColor, int nDim, QudaReconstructType reconstruct>
 struct WilsonArg : DslashArg<Float, nDim> {
 static constexpr int nSpin = 4;

 using F = typename colorspinor_mapper<Float, nSpin, nColor, spin_project, true>::type;
 F out[MAX_MULTI_RHS]; /** output vector field set */
 F in[MAX_MULTI_RHS]; /** input vector field set */

 using Ghost = typename colorspinor::GhostNOrder<Float, nSpin, nColor, spin_project, false>;
 Ghost halo; /** halo accessor */

Parameter argument for driving the Wilson operator
(abbreviated)

Array of accessors for the field bodies

Single accessor for the ghost zones

• QUDA uses opaque “accessors” for all data access

• Implementation is simple: maintain an array of accessors, one per RHS

• Separate accessor for the ghost zones used by all RHS

14

Kernel Architecture
Mapping onto the hardware

• RHS index is mapped to y thread dimension

• src_idx = blockDim.y * blockIdx.y + threadIdx.y

• Autotuner will pick optimal block size, balancing locality against parallelism

• Multiple RHS in same thread block will ensure L1 reuse of gauge field

• Maximum RHS per kernel instance controlled by MAX_MULTI_RHS

• Exposed as a CMake parameter

• Default is 64 on green team

• Kernel argument footprint can be a problem on some non-green architectures

• All kernels deployed to run on arbitrary RHS

• If set size exceeds MAX_MULTI_RHS, then split and recurse

• Ensures that algorithms will run on any accelerator architecture

15

Wilson Dslash

Wilson Dslash FP32, GH200 • Smaller volumes see biggest boost in performance

• Parallelism + Locality

• Larger volumes on see boost due to locality

• SRHS Performance model

• Naïve words

• Perfect caching words

• MRHS Performance model

• Naïve asymptote words

• Perfect asymptote words

• Expect speedup

• Reality is somewhere in between

8 × 24 + 18 × 8 = 336

2 × 24 + 18 × 8 = 192

8 × 24 = 192

2 × 24 = 48

∈ [1.75, 4]

16

Improved Staggered

Improved Staggered Dslash FP32, GH200 • Similar story for staggered

• Larger speedups due to increased locality of
staggered operator

• 124 has L1 cache quantization effects

• SRHS Performance model

• Naïve words

• Perfect caching words

• MRHS Performance model

• Naïve asymptote words

• Perfect asymptote words

17 × 6 + 36 × 8 = 390

2 × 6 + 36 × 8 = 300

17 × 6 = 102

2 × 6 = 12

17

Rewriting the Solvers

• All regular BLAS kernels rewritten to support batching

• Reductions return a vector of scalars

• Solver interface promoted to batched

• Changes required to solvers is modest and can be done incrementally

• Require convergence for all RHS before exiting solvers

• Block BLAS is not yet batch aware

• For now performed as a serial loop over RHS

• Impacts performance of some solvers, e.g., communication avoiding (CA) smoothers used in multigrid

void axpy(cvector<double> &a,
 cvector_ref<const ColorSpinorField> &x,
 cvector_ref<ColorSpinorField> &y)

void axpy(double a, const ColorSpinorField &x,
 ColorSpinorField &y)

double b2 = blas::norm2(b); auto b2 = blas::norm2(b);

18

Block Lanczos + Block Deflation
HISQ Fermions

• Conventional deflation algorithm

• Find eigenvectors of operator (Lanczos)

• For each RHS

• Deflate eigenvectors from residual (+ restart)

• Run solver (CG)

• MRHS deflation algorithm

• Find eigenvectors of operator (Block Lanczos)

• Block deflate eigenvectors from set of RHS (+ restart)

• Run MRHS solver (batch CG)

• Note energy number ignores non-GPU power

• Energy reduction factor is underestimated

SRHS MRHS (B = 16)
double-single

MRHS (B = 16)
double-half

Lanczos time (sec) 155 58.0

Lanczos GFLOPS 970 2775

Lanczos energy (kJ) 47.0 20.0

CG time (sec per
source)

0.68 0.234 0.182

CG GFLOPS 890 2580 3390

CG energy J
(per source)

220 86.4 73.1

2x Quadro GV100, Gaussian sources,
| |r | |
| |b | |

< 10−10

HotQCD V=483x12, m = 0.00167, = 6.794β

QUDA uses the block TRLM algorithm
arXiv:1902.02064

Implemented by Dean Howarth

19

Im
p

ro
ve

m
en

t
Fa

ct
or

0

1

2

3

4

Lanczos double-single CG double-half CG

Time GFLOPS Energy

Block Lanczos + Block Deflation
HISQ Fermions

20

Multigrid

• Multigrid has perhaps the greatest to benefit from MRHS

• Coarse operator has more “colours” so more locality

• Coarse grids are extremely parallelism challenged

• Both phases of MG can utilize MRHS

• Batched null-space finding

• MRHS deployment of the actual solver

4x H100-80, tmLQCD V=323x64, , , Nvec = 32,64κ = 0.1373 csw = 1.57551

Batch size 1/1 8/8 32/64

Time (sec) 13.3 6.35 5.90

TFLOPS 12.2 25.4 27.5

Speedup 1.0 2.08 2.25

Energy (kJ) 24.1 13.4 13.3

MG Setup

21

If you can’t beat them, join them
Tensor Cores

• Increasing proportion of GPU die area spent on AI

• Coarse grids have GEMM-like computations with tensor-core friendly dimensions (24, 32, 64, etc.)

• Combine multiple low-precision tensor-core operations to emulate higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

• Applying tensor cores to various MG kernels

• Done: Coarse Dslash, link coarsening kernels

• To do: prolongator, restrictor, block orthogonalization

• Continue to maintain non-tensor core variants in “portable QUDA”

C = AB = (Ahi + Alo)(Bhi + Blo) ∼ (AhiBhi + AhiBlo + AloBhi)

Tensor-core accelerated multi-RHS
coarse single-precision Dslash (A100)

5 TFLOPS ->
 15 TFLOPS

22

Multigrid

• Multigrid has perhaps the greatest to benefit from MRHS

• Coarse operator has more “colours” so more locality

• Coarse grids are extremely parallelism challenged

• Both phases of MG can utilize MRHS

• Batched null-space finding

• MRHS deployment of the actual solver

4x H100-80, tmLQCD V=323x64, , , Nvec = 32,64κ = 0.1373 csw = 1.57551

Batch size 1/1 8/8 32/64 32/64TC

Time (sec) 13.3 6.35 5.90 3.91

TFLOPS 12.2 25.4 27.5 41.5

Speedup 1.0 2.08 2.25 3.4

Energy (kJ) 24.1 13.4 13.3 6.30

MG Setup 3.4x faster
and

3.8x less energy

23

Multigrid

Batch size 1 8 16 32 32TC

Time (sec per rhs) 0.157 0.125 0.0980 0.0889 0.0747

TFLOPS 10.7 12.8 17.8 19.4 22.8

 Energy (J per rhs) 275 190 180 176 125

• Speedups will only increase as optimization progresses

• MRHS motivates a retuning of algorithmic parameters

• Significant cost reduction for setup provides scope to improve preconditioner quality

• As we increase RHS, we can get a better solver at constant iteration cost

4x H100-80, tmLQCD V=323x64, , , Nvec = 32,64, κ = 0.1373 csw = 1.57551
| |r | |
| |b | |

< 10−10

MG Solvers
2.1x faster

and
2.2x less energy

24

Sink Projections

• Time-slice contraction of fermions with 3-d Laplace eigenvectors

• Critical part of the stochastic LapH pipeline

• CPU-based projections on Summit comparable to MG solves at physical masses (CLS E250)

• Traditionally run a serial loop over over eigenvectors and fermions

 spin indices, fermion index, eigenvector index

• Instead deploy the calculation as a MRHS computation to increase parallelism and reuse of loads

• Use multi-level tiling to work around memory limitations and hide host <-> device transfers

• Combination of CPU -> GPU and tiled computation ~100x speedup

• No longer any significant cost compared to MG solves

cs,i,j
t = ∑⃗

x

ψ s,i †
⃗x,t

ϕ j
⃗x,t

s i j

Drew Hanlon, Ben Hoerz,
Colin Morningstar, André Walker-Loud

25

Summary

• Rearchitected QUDA for multi-RHS computation everywhere

• Scalable for future architecture evolution

• MRHS solvers demonstrate significant speedup versus serial solvers

• Speedups presently ~2-3x

• Much more optimization coming (MG especially)

• MRHS significantly reduces energy of computation

• Using tensor cores gives super-linear reduction

• Going forward, all stages of the LQCD pipeline should embrace this philosophy

More details at the poster by Evan Weinberg

QUDA - Accelerated Batched Solvers for LQCD Workflows

• Split Grid + MRHS

• HISQ MG MRHS

26

QUDA NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware

Sp
ee

du
p

1

10

100

1000

10000

G
FL

O
PS

0

1000

2000

3000

4000

5000

6000

2008 2010 2012 2014 2016 2018 2020 2022 2024

Wilson FP32 GFLOPS Speedup

Speedup determined by measured time to solution for solving the Wilson operator against a random source on a V=24364
lattice, β=5.5, Mπ=416 MeV. One node is defined to be 3 GPUs.

Multi-GPU
capable

Adaptive
MG

Optimized
MG

Deflated
MG

~5000x

MRHS
MG

27

REWORKING THE LQCD PIPELINE

2 nucleon (2 baryon) and 2 hadron (ππ, Κπ) and meson-baryon catering cross sections

slaphnn collaboration

AI ~ flops / bytes

28

