< NVIDIA

Rearchitecting QUDA for multi-RHS computatlons

Kate Clark
Lattice 2024

Balint Joo, Jigun Tu, Mathias Wagner, Evan Weinberg

Motivation

Three performance limiter trends are apparent in High Performance Computing
Memory bandwidth limited
Parallelism Limited
Energy Limited (more recent)

This work seeks to address all of these limiters

(Results are extremely preliminary)

2 NVIDIA

PRACE

**ECP benchmarks apps

e “QCD on CUDA” - http://lattice.github.com/quda (open source, BSD license)

o Effort started at Boston University in 2008, now in wide use as the GPU
backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc. Provides solvers for
all major fermionic discretizations, with multi-GPU support

 Maximize performance

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Multigrid solvers for optimal convergence

— NVSHMEM for improving strong scaling

e Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

* Aresearch tool for how to reach the exascale (and beyond)
— Optimally mapping the problem to hierarchical processors and node topologies

3 < NVIDIA

QUDA CONTRIBUTORS

Simone Bacchio (Cyprus)
Michael Balfhauf (Regensburg)
Kip Barros (LANL)

Rich Brower (Boston University)
Nuno Cardoso (NCSA)

Michael Cheng (Boston University)

Carleton DeTar (Utah University)

Justin Foley (Utah -> NIH)

Joel Giedt (Rensselaer Polytechnic Institute)
Arjun Gambhir (William and Mary)

Marco Garofalo (Bonn)

Steve Gottlieb (Indiana University)

Kyriakos Hadjiyiannakou (Cyprus)

Ben Hoerz (Intel)

Dean Howarth (LBL)

Xiangyu Jiang (ITP, Chinese Academy of Sciences)
Xiao-Yong Jin (ANL)

Hyung-Jin Kim (BNL -> Samsung)

Bartek Kostrzewa (Bonn)
Damon McDougall (AMD)

Colin Morningstar (CMU)

James Osborn (ANL)

Ferenc Pittler (Cyprus)

Claudio Rebbi (Boston University)
Eloy Romero (William and Mary)
Hauke Sandmeyer (Bielefeld)
Aniket Sen (Bonn)

Guochun Shi (NCSA -> Google)
Mario Schrock (INFN)

Alexei Strelchenko (FNAL)

Alejandro Vaquero (Utah University)
Michael Wagman (FNAL)

André Walker-Loud (LBL)

Frank Winter (Jlab)
Yi-bo Yang (CAS)

4

NVIDIA.

MAPPING THE DIRAC OPERATOR TO GPUS

X +V

Finite difference operator in LQCD is known as Dslash D

Assign a single space-time point to each thread
V = XYZT threads, e.g., V = 244 => 3,.3x10°6 threads

Looping over direction each thread must
Load the neighboring spinor (24 numbers x8)
Load the color matrix connecting the sites (18 humbers x8)
Do the computation

Save the result (24 numbers) X[1] ..O...
Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity .0.!!!

QUDA reduces memory traffic O..
Exact SU(3) matrix compression (18 => 12 or 8 real numbers) '
Use 16-bit fixed-point representation with mixed-precision solver X[0]

5 < NVIDIA.

PARALLELISM ISN’T INFINITE

Wilson-clover stencil (Chroma, A100-80)

e ~2400 GB/s
4500
e
% ~2700 GB/s
= 3000
L
O /
1500 ~2700 GB/s
& half # single @ double
0
NVIDIA A100. 8 12 16 20 24 28 32 36 40
CUDA 11.1,

— L

GCC 11.5 strong scaling 6 <NVIDIA

PARALLELISM ISN’T INFINITE

Wilson-clover stencil (Chroma, A100-80)

smallest reasonable
6000 problgfn size ~2400 GB/s
4500
e
% ~2700 GB/s
= 3000
L
O
1500 ~2700 GB/s
& half # single @ double
NVIDIA A100, : 12316 i 20 24 28 32 36 40
CUDA 11.1,

— L

GCC 11.5 strong scaling 6 <NVIDIA

MULTIGRID IS EVEN WORSE

Gets harder with every generation

O Kepler © Maxwell Pascal O Volta © Ampere
1600
1200
)
al
O 800
LL
O
400
0
2 4 6 8 10

Lattice length

Latency limited Bandwidth limited

Coarse operator performance 7 AnviDiA

Energy Efficiency Drives Locality

64-bit DP |EpZ{ReN

20mm
28nm IC

Energy Efficiency Drives Locality

64-bit DP |EpZ{ReN

250-bit access]
3 kB SRAM 50 pJ

20mm
28nm IC

Energy Efficiency Drives Locality

Sz | 20 pJ |26pd |256 pJ

256-bit access] 256 |
8 kB SRAM [N bits

20mm
28nm IC

Energy Efficiency Drives Locality

Sz | 20 pJ |26pd |256 pJ

256-bit access] 256 |
8 kB SRAM RIS bits

20mm
28nm IC

Energy Efficiency Drives Locality

Sz | 20 pJ |26pd |256 pJ

256-bit access R SR LN Rl Gems) DRAM Rd/Wr

8 kB SRAM 50 pJ IS
SR R G Efficient off-chip link

20mm
28nm IC

8 <A NVIDIA. I

1000000

100000

10000

1000

picodJoules

100

10

Locality Drives Energy Efficiency

FMA Registers

L1

L2

HBM

network

9

NVIDIA

MULTI RHS IS (SOME OF) THE SOLUTION

Batch multiple RHS computation in a single kernel

Memory traffic reduction
Gauge field load is shared across multiple RHS

Gauge field remains in cache after first touch
1

N rhs

Traffic reduces as

Parallelism scales with number of RHS

Energy reduces with decreased memory traffic
Power may go up due to faster rate of computation

Actual power efficiency will increase

10 NVIDIA.

MULTI RHS IS (SOME OF) THE SOLUTION

Batch multiple RHS computation in a single kernel

Memory traffic reduction
Gauge field load is shared across multiple RHS

Gauge field remains in cache after first touch
1

N rhs

Traffic reduces as

Parallelism scales with number of RHS

Energy reduces with decreased memory traffic
Power may go up due to faster rate of computation

Actual power efficiency will increase

GFLOPS

4000

3000

2000

1000

Multi-RHS Coarse Dslash perf

& 274

& 474

5 / 9 11
Number of right hand sides

Volta

13

15

10

NVIDIA.

Rearchitecting for MRHS

Previously deployed block CG for staggered fermions in QUDA arXiv:1710.09745
Convenient to consider MRHS dimension as an “extra dimension” from architectural point of view
However restricts algorithmic flexibility, e.qg., accessing subsets

Not suitable for library wide deployment

Algorithmically might prefer to have a std: :vector<ColorSpinorField>
Avoids requiring contiguous memory allocations
Disjoint communication buffers however would cause a significant latency overhead for halo communication

Arbitrary subsets will incur move / copy overheads
Historically some of QUDA used std: :vector<ColorSpinorField*>

No overhead for subsets, etc

Not desirable to rearchitect QUDA around passing raw pointers

11 NVIDIA.

Rearchitecting for MRHS

Use std: :vector<std::reference wrapper<ColorSpinorField>> as the interface for all MRHS kernels?
Non-ownership of the fields

Zero overhead for taking subsets, supersets, etc.

Extend std: :vector to make it fit for purpose
ColorSpinorField methods available directly from vector<std: :reference wrapper<ColorSpinorField>>
e.g., querying the number of colors
Provides opportunity for set uniformity, parameter checking etc.
Auto construction of a vector container if a singleton is passed in

Compatibility with legacy code

Use a single halo accessor for all RHS
Map RHS dimension to extra dimension for communication

All communication code, NVSHMEM etc., just works

12 NVIDIA.

Kernel Architecture

QUDA uses opaque “accessors” for all data access
Implementation is simple: maintain an array of accessors, one per RHS

Separate accessor for the ghost zones used by all RHS

template <typename Float, int nColor, int nDim, QudaReconstructType reconstruct> Parameter argument for driving the Wilson OperatOr

struct WilsonArg : DslashArg<Float, nDim> { .
static constexpr int nSpin = 4; (abbrewated)

using F = typename colorspinor_mapper<Float, nSpin, nColor, spin_project, true>::type; - :
F out [MAX_MULTI_RHS]; /#* output vector field set #/ Array of accessors for the field bodies

F in[MAX_MULTI_RHS]; /** input vector field set x/

using Ghost = typename colorspinor::GhostNOrder<Float, nSpin, nColor, spin_project, false>, Single accessor for the ghOSt 7ZoNes
Ghost halo; /**x halo accessor x/

Forward derivative term if (doHalo<kernel type>(d) && ghost) A
// we need to compute the face index if we are updating a face that isn't ours

const int ghost idx = (kernel_type == EXTERIOR_KERNEL_ALL && d !'= thread_dim) ?
ghostFaceIndex<l, Arg::nDim>(coord, arg.dim, d, arg.nFace) : idx;

Single ghost buffer shared by all RHS Link U = arg.U(d, gauge_idx, gauge_parity);
_ _ _ HalfVector in = arg.halo.Ghost(d, 1, ghost _idx + (src_idx * arg.Ls + coord.s) *x arg.dc.ghostFaceCB[d],
RHS index maps to the 5th dimension their_spinor_parity);

out += fwd_coeff x (U * in).reconstruct(d, proj_dir);
} else if (doBulk<kernel type>() && !'ghost) {

Separate accessor for each RHS Link U = arg.U(d, gauge idx, gauge parity):
RHS index maps to the accessor index Vector in = arg.in[src_idx] (fwd_idx + coord.s * arg.dc.volume_4d_cb, their_spinor_parity);

out += fwd_coeff x (U x in.project(d, proj_dir)).reconstruct(d, proj_dir);
y 13 NVIDIA.

Kernel Architecture

RHS index is mapped to y thread dimension

src 1dx = blockDim.y * blockIdx.y + threadIdx.y
Autotuner will pick optimal block size, balancing locality against parallelism

Multiple RHS in same thread block will ensure L1 reuse of gauge field

Maximum RHS per kernel instance controlled by MAX MULTI RHS
Exposed as a CMake parameter
Default is 64 on team

Kernel argument footprint can be a problem on some non-green architectures
All kernels deployed to run on arbitrary RHS

If set size exceeds MAX MULTI RHS, then split and recurse

Ensures that algorithms will run on any accelerator architecture

14 NVIDIA

GFLOPS

Wilson Dslash

Wilson Dslash FP32, GH200 - Smaller volumes see biggest boost in performance

- Parallelism + Locality
10000

9000 ""‘3-;_/-5._ = e N —g—
- Larger volumes on see boost due to locality
8000 ' /‘
7000 5
- SRHS Performance model

6000
5000 - Naive 8 X 24 + 18 X 8 = 336 words
4000 . Perfect caching2 X 24 + 18 X 8 = 192 words
3000
2000 - MRHS Performance model
1000 - Naive asymptote 8 X 24 = 192 words

0 - Perfect asymptote 2 X 24 = 48 words

0 4 38 12 16 20 24 28 32
Number of RHS
—~-12"4 —--16"4 ---24"4 —--32"4 - Expect speedup € [1.75, 4]

- Reality is somewhere in between

15 <A NVIDIA. I

GFLOPS

Improved Staggered

Improved Staggered Dslash FP32, GH200 Similar story for staggered

12000 Larger speedups due to increased locality of
staggered operator

10000 124 has L1 cache quantization effects

8000 . =7 W N
/\».‘\/M/\” N SRHS Performance model
5000 | Naive 17 X 6 + 36 X 8 = 390 words
1000 Perfect caching 2 X 6 + 36 X 8 = 300 words
2000
MRHS Performance model
0 Naive asymptote 17 X 6 = 102 words
0 4 3 12 16 20 24 28 32
Number of RHS Perfect asymptote 2 X 6 = 12 words

—-12"4 —«-16"4 —=-24"4 3274

16 NVIDIA.

Rewriting the Solvers

- All reqular BLAS kernels rewritten to support batching

void axpy(cvector<double> &a,

void axpy(double a, const ColorSpinorField &x, » cvector_ref<const ColorSpinorField> &x,
ColorSpinorField &y) cvector_ref<ColorSpinorField> &y)

 Reductions return a vector of scalars

double b2 = blas::norm2(b): » auto b2 = blas::norm2(b);

- Solver interface promoted to batched

- Changes required to solvers is modest and can be done incrementally
- Require convergence for all RHS before exiting solvers

» Block BLAS is not yet batch aware
- For now performed as a serial loop over RHS

- Impacts performance of some solvers, e.g., communication avoiding (CA) smoothers used in multigrid

17 <A NVIDIA. I

QUDA uses the block TRLM algorithm
arXiv:1902.02064

Block Lanczos + Block Deflation implemented by Dean Howarth
HISQ Fermions

HotQCD V=483x12, m = 0.00167, 3 = 6.794

- Conventional deflation algorithm || 7]]

_ _ 2X Quadro GV 100, Gaussian sources,
- Find eigenvectors of operator (Lanczos) i

» For each RHS

10—10

- Deflate eigenvectors from residual (+ restart)

- Run solver (CG)

- MRHS deflation algorithm

- Find eigenvectors of operator (Block Lanczos)

- Block deflate eigenvectors from set of RHS (+ restart)

» Run MRHS solver (batch CG)

- Note energy number ignores non-GPU power

- Energy reduction factor is underestimated

18 <A NVIDIA. I

Improvement Factor

Block Lanczos + Block Deflation
HISQ Fermions

A
B Time | GFLOPS [Energy
3
”
1
0

Lanczos double-single CG double-half CG

19 <A NVIDIA. I

Multigrid

- Multigrid has perhaps the greatest to benefit from MRHS
- Coarse operator has more “colours”™ so more locality

- Coarse grids are extremely parallelism challenged

- Both phases of MG can utilize MRHS
- Batched null-space finding
- MRHS deployment of the actual solver

4x H100-80, tmLQCD V=323x64,k = 0.1373,c., = 1.57551, Nyec = 32,64

P USW

MG Setup

20 <A NVIDIA. I

If you can’t beat them, join them

Tensor Cores

Increasing proportion of GPU die area spent on Al

Coarse grids have GEMM-like computations with tensor-core friendly dimensions (24, 32, 64, etc.)

Combine multiple low-precision tensor-core operations to emulate higher precision

C =AB = (Ay; + A By; + B ~ (Ay;By; + ApiB, + AyBy) 20000 B 2x2x2x2-single
- FP32 ~ 3xTF32 W dxdxixs-singl
Bx6x6x6-single

- QUDA half ~3x BF16 15000 , B 8x8x8x8-single

o 2x2x2x2-single-mma
. 4x4x4x4-single-mma

| | 6x6x6X6-single-
Applying tensor cores to various MG kernels 10000 x6x6x6-single-mma

8x8x8x8-single-mma

- Done: Coarse Dslash, link coarsening kernels
_ . . 5000 '
To do: prolongator, restrictor, block orthogonalization 5 TELOPS -5>
A | 15 TFLOPS
0 |
Continue to maintain non-tensor core variants in “portable QUDA" 8 16 24 32 40 48 56 64

Tensor-core accelerated multi-RHS

coarse single-precision Dslash (A100)
21 <ANVIDIA I

Multigrid

- Multigrid has perhaps the greatest to benefit from MRHS
- Coarse operator has more “colours”™ so more locality

- Coarse grids are extremely parallelism challenged

- Both phases of MG can utilize MRHS
- Batched null-space finding
- MRHS deployment of the actual solver

4x H100-80, tmLQCD V=323x64,k = 0.1373,c., = 1.57551, Nyec = 32,64

> USW

MG Setup 3.4x faster

and
3.8x less energy

22 <ANVIDIA. I

Multigrid

r
4x H100-80, tmLQCD V=323x64, k = 0.1373, c.., = 1.57551, Nvec = 32,64,] < 10719

o [15]]

2.1x faster
and

2.2X less energy

MG Solvers

- Speedups will only increase as optimization progresses
- MRHS motivates a retuning of algorithmic parameters

 Significant cost reduction for setup provides scope to improve preconditioner quality

- As we increase RHS, we can get a better solver at constant iteration cost

23 <A NVIDIA. I

Drew Hanlon, Ben Hoerz,
Colin Morningstar, André Walker-Loud

Sink Projections

Time-slice contraction of fermions with 3-d Laplace eigenvectors
Critical part of the stochastic LapH pipeline

CPU-based projections on Summit comparable to MG solves at physical masses (CLS E250)

Traditionally run a serial loop over over eigenvectors and fermions

Cs,ij _

t Z ”Lgb] s spin indices, 1 fermion index, j eigenvector index

X

Instead deploy the calculation as a MRHS computation to increase parallelism and reuse of loads
Use multi-level tiling to work around memory limitations and hide host <-> device transfers

Combination of CPU -> GPU and tiled computation ~100x speedup

No longer any significant cost compared to MG solves

24 NVIDIA

Summary

Rearchitected QUDA for multi-RHS computation everywhere |QUDA - Accelerated Batched Solvers for LQCD Workflows |

Scalable for future architecture evolution Split Grid + MRHS

MRHS solvers demonstrate significant speedup versus serial solvers
Speedups presently ~2-3x

Much more optimization coming (MG especially)

MRHS significantly reduces energy of computation

Using tensor cores gives super-linear reduction

Going forward, all stages of the LQCD pipeline should embrace this philosophy

25 NVIDIA.

GFLOPS

6000

5000

4000

3000

2000

1000

0

QUDA NODE PERFORMANCE OVER TIME

Multiplicative speedup through software and hardware

MRHS

s

.~ Wilson FP32 GFLOPS O Speedup

e

-

Def lated

Optlmlzed

capable
ﬂ - I |

2008

2010 2012 2014 2016 2018 2020 2022 2024

10000
000x

1000

10

1

Speedup

Speedup determined by measured time to solution for solving the Wilson operator against a random source on a V=24364
lattice, B=5.5, MT=416 MeV. One node is defined to be 3 GPUs.

26 < NVIDIA.

Al ~ flops / bytes

REWORKING THE LQCD PIPELINE

slaphnn collaboration

2 nucleon (2 baryon) and 2 hadron (i, Kim) and meson-baryon catering cross sections

Classical approach (Parallelism / Modern approach |Parallelism /
Intensity Intensity

3-d Laplace Lanczos TxV; Batched-Block- BxTxVs/

eigenvectors Al ~ 1 Lanczos Al ~ B

Clover-fermion Sequential multigrid V4 Block multigrid Ny X V4 /

solves Al ~ 1 Al ~ Nrhs

Sink projections Sequential inner TxVs/ Blocked inner No X Ny X T X V3
products Al ~ 1 productions Al ~ (No X Ny)/(N; +

=> Matrix multiply N,)

Ollgg=gie gseaenit Sequential insertions T x Vi3 / Blocked insertions NyZ2x T x Vs
(morally inner Al ~ 1 => Matrix multiply Al = (N,2)/(ZNy)
products)

27 <A NVIDIA.

< NVIDIA

