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Motivation
HPC is Trending

• Three performance limiter trends are apparent in High Performance Computing 

• Memory bandwidth limited 

• Parallelism Limited 

• Energy Limited (more recent) 

• This work seeks to address all of these limiters 

• (Results are extremely preliminary)
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QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU 

backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc. Provides solvers for 
all major fermionic discretizations, with multi-GPU support 

• Maximize performance 
– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Multigrid solvers for optimal convergence 
– NVSHMEM for improving strong scaling 

• Portable: HIP (merged), SYCL (in review) and OpenMP (in development) 
• A research tool for how to reach the exascale (and beyond) 

– Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmarks apps
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QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (C++14, open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU backend for 

BQCD, Chroma, CPS, MILC, TIFR, etc. 
• Various solvers for all major fermionic discretizations, with multi-GPU support 
• Maximize performance 

– Mixed-precision methods (runtime specification of precision for maximum flexibility) 
– Exploit physical symmetries to minimize memory traffic 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multi-RHS solvers 
– Multigrid solvers for optimal convergence 

• A research tool for how to reach the exascale (and beyond)
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MAPPING THE DIRAC OPERATOR TO GPUS

• Finite difference operator in LQCD is known as Dslash 
• Assign a single space-time point to each thread 

V = XYZT threads, e.g., V = 244 => 3.3x106 threads 

• Looping over direction each thread must 
– Load the neighboring spinor (24 numbers x8) 

– Load the color matrix connecting the sites (18 numbers x8) 

– Do the computation 

– Save the result (24 numbers)  

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity 
• QUDA reduces memory traffic 

Exact SU(3) matrix compression (18 => 12 or 8 real numbers) 
Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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PARALLELISM ISN’T INFINITE
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MULTIGRID IS EVEN WORSE
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Energy Efficiency Drives Locality
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Energy Efficiency Drives Locality
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Energy Efficiency Drives Locality
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Locality Drives Energy Efficiency
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MULTI RHS IS (SOME OF) THE SOLUTION
Locality, Parallelism, Energy

• Batch multiple RHS computation in a single kernel 

• Memory traffic reduction 

• Gauge field load is shared across multiple RHS 

• Gauge field remains in cache after first touch 

• Traffic reduces as  

• Parallelism scales with number of RHS 

• Energy reduces with decreased memory traffic 

• Power may go up due to faster rate of computation 

• Actual power efficiency will increase 

1
Nrhs
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MULTI RHS IS (SOME OF) THE SOLUTION
Locality, Parallelism, Energy
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Rearchitecting for MRHS

• Previously deployed block CG for staggered fermions in QUDA arXiv:1710.09745 

• Convenient to consider MRHS dimension as an “extra dimension” from architectural point of view 

• However restricts algorithmic flexibility, e.g., accessing subsets 

• Not suitable for library wide deployment 

• Algorithmically might prefer to have a std::vector<ColorSpinorField> 

• Avoids requiring contiguous memory allocations 

• Disjoint communication buffers however would cause a significant latency overhead for halo communication 

• Arbitrary subsets will incur move / copy overheads 

• Historically some of QUDA used std::vector<ColorSpinorField*> 

• No overhead for subsets, etc 

• Not desirable to rearchitect QUDA around passing raw pointers
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Rearchitecting for MRHS

• Use std::vector<std::reference_wrapper<ColorSpinorField>>  as the interface for all MRHS kernels? 

• Non-ownership of the fields 

• Zero overhead for taking subsets, supersets, etc. 

• Extend std::vector to make it fit for purpose 

• ColorSpinorField methods available directly from vector<std::reference_wrapper<ColorSpinorField>>  

• e.g., querying the number of colors 

• Provides opportunity for set uniformity, parameter checking etc. 

• Auto construction of a vector container if a singleton is passed in 

• Compatibility with legacy code 

• Use a single halo accessor for all RHS 

• Map RHS dimension to extra dimension for communication 

• All communication code, NVSHMEM etc., just works
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Kernel Architecture
Wilson Dslash

        if (doHalo<kernel_type>(d) && ghost) { 
          // we need to compute the face index if we are updating a face that isn't ours                                                                                                                                            
          const int ghost_idx = (kernel_type == EXTERIOR_KERNEL_ALL && d != thread_dim) ? 
            ghostFaceIndex<1, Arg::nDim>(coord, arg.dim, d, arg.nFace) : idx; 

          Link U = arg.U(d, gauge_idx, gauge_parity); 
          HalfVector in = arg.halo.Ghost(d, 1, ghost_idx + (src_idx * arg.Ls + coord.s) * arg.dc.ghostFaceCB[d], 
                                         their_spinor_parity); 

          out += fwd_coeff * (U * in).reconstruct(d, proj_dir); 
        } else if (doBulk<kernel_type>() && !ghost) { 

          Link U = arg.U(d, gauge_idx, gauge_parity); 
          Vector in = arg.in[src_idx](fwd_idx + coord.s * arg.dc.volume_4d_cb, their_spinor_parity); 

          out += fwd_coeff * (U * in.project(d, proj_dir)).reconstruct(d, proj_dir); 
	       }

Forward derivative term

Single ghost buffer shared by all RHS 
RHS index maps to the 5th dimension

Separate accessor for each RHS 
RHS index maps to the accessor index

  template <typename Float, int nColor, int nDim, QudaReconstructType reconstruct> 
  struct WilsonArg : DslashArg<Float, nDim> { 
   static constexpr int nSpin = 4;                                                                                                                                                

    using F = typename colorspinor_mapper<Float, nSpin, nColor, spin_project, true>::type; 
    F out[MAX_MULTI_RHS]; /** output vector field set */ 
    F in[MAX_MULTI_RHS];  /** input vector field set */ 

    using Ghost = typename colorspinor::GhostNOrder<Float, nSpin, nColor, spin_project, false>; 
    Ghost halo;           /** halo accessor */

Parameter argument for driving the Wilson operator  
(abbreviated)

Array of accessors for the field bodies

Single accessor for the ghost zones

• QUDA uses opaque “accessors” for all data access 

• Implementation is simple: maintain an array of accessors, one per RHS 

• Separate accessor for the ghost zones used by all RHS 
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Kernel Architecture
Mapping onto the hardware

• RHS index is mapped to y thread dimension 

• src_idx = blockDim.y * blockIdx.y + threadIdx.y 

• Autotuner will pick optimal block size, balancing locality against parallelism 

• Multiple RHS in same thread block will ensure L1 reuse of gauge field 

• Maximum RHS per kernel instance controlled by MAX_MULTI_RHS  

• Exposed as a CMake parameter 

• Default is 64 on green team 

• Kernel argument footprint can be a problem on some non-green architectures 

• All kernels deployed to run on arbitrary RHS 

• If set size exceeds MAX_MULTI_RHS, then split and recurse 

• Ensures that algorithms will run on any accelerator architecture
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Wilson Dslash

Wilson Dslash FP32, GH200 • Smaller volumes see biggest boost in performance 

• Parallelism + Locality 

• Larger volumes on see boost due to locality 

• SRHS Performance model 

• Naïve  words 

• Perfect caching  words 

• MRHS Performance model 

• Naïve asymptote  words 

• Perfect asymptote  words 

• Expect speedup   

• Reality is somewhere in between

8 × 24 + 18 × 8 = 336

2 × 24 + 18 × 8 = 192

8 × 24 = 192

2 × 24 = 48

∈ [1.75, 4]
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Improved Staggered

Improved Staggered Dslash FP32, GH200 • Similar story for staggered 

• Larger speedups due to increased locality of 
staggered operator 

• 124 has L1 cache quantization effects 

• SRHS Performance model 

• Naïve  words 

• Perfect caching  words 

• MRHS Performance model 

• Naïve asymptote  words 

• Perfect asymptote  words

17 × 6 + 36 × 8 = 390

2 × 6 + 36 × 8 = 300

17 × 6 = 102

2 × 6 = 12
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Rewriting the Solvers

• All regular BLAS kernels rewritten to support batching 

• Reductions return a vector of scalars  

• Solver interface promoted to batched  

• Changes required to solvers is modest and can be done incrementally 

• Require convergence for all RHS before exiting solvers 

• Block BLAS is not yet batch aware 

• For now performed as a serial loop over RHS 

• Impacts performance of some solvers, e.g., communication avoiding (CA) smoothers used in multigrid

void axpy(cvector<double> &a, 
          cvector_ref<const ColorSpinorField> &x, 
          cvector_ref<ColorSpinorField> &y)

void axpy(double a, const ColorSpinorField &x, 
          ColorSpinorField &y)

double b2 = blas::norm2(b); auto b2 = blas::norm2(b);
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Block Lanczos + Block Deflation
HISQ Fermions

• Conventional deflation algorithm 

• Find eigenvectors of operator (Lanczos) 

• For each RHS 

• Deflate eigenvectors from residual (+ restart) 

• Run solver (CG) 

• MRHS deflation algorithm 

• Find eigenvectors of operator (Block Lanczos) 

• Block deflate eigenvectors from set of RHS (+ restart) 

• Run MRHS solver (batch CG) 

• Note energy number ignores non-GPU power 

• Energy reduction factor is underestimated 

SRHS MRHS (B = 16) 
double-single

MRHS (B = 16) 
double-half

Lanczos time (sec) 155 58.0

Lanczos GFLOPS 970 2775

Lanczos energy (kJ) 47.0 20.0

CG time (sec per 
source)

0.68 0.234 0.182

CG GFLOPS 890 2580 3390

CG energy J 
(per source)

220 86.4 73.1

2x Quadro GV100, Gaussian sources, 
| |r | |
| |b | |

< 10−10

HotQCD V=483x12, m = 0.00167,  = 6.794β

QUDA uses the block TRLM algorithm  
arXiv:1902.02064 

Implemented by Dean Howarth
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Multigrid

• Multigrid has perhaps the greatest to benefit from MRHS 

• Coarse operator has more “colours” so more locality 

• Coarse grids are extremely parallelism challenged  

• Both phases of MG can utilize MRHS 

• Batched null-space finding 

• MRHS deployment of the actual solver

4x H100-80, tmLQCD V=323x64, , , Nvec = 32,64κ = 0.1373 csw = 1.57551

Batch size 1/1 8/8 32/64

Time (sec) 13.3 6.35 5.90

TFLOPS 12.2 25.4 27.5

Speedup 1.0 2.08 2.25

Energy (kJ) 24.1 13.4 13.3

MG Setup
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If you can’t beat them, join them
Tensor Cores

• Increasing proportion of GPU die area spent on AI 

• Coarse grids have GEMM-like computations with tensor-core friendly dimensions (24, 32, 64, etc.) 

• Combine multiple low-precision tensor-core operations to emulate higher precision 

• FP32 ~ 3xTF32 

• QUDA half ~ 3x BF16 

• Applying tensor cores to various MG kernels 

• Done: Coarse Dslash, link coarsening kernels 

• To do: prolongator, restrictor, block orthogonalization 

• Continue to maintain non-tensor core variants in “portable QUDA”

C = AB = (Ahi + Alo)(Bhi + Blo) ∼ (AhiBhi + AhiBlo + AloBhi)

Tensor-core accelerated multi-RHS 
coarse single-precision Dslash (A100)

5 TFLOPS -> 
 15 TFLOPS
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Multigrid

• Multigrid has perhaps the greatest to benefit from MRHS 

• Coarse operator has more “colours” so more locality 

• Coarse grids are extremely parallelism challenged  

• Both phases of MG can utilize MRHS 

• Batched null-space finding 

• MRHS deployment of the actual solver

4x H100-80, tmLQCD V=323x64, , , Nvec = 32,64κ = 0.1373 csw = 1.57551

Batch size 1/1 8/8 32/64 32/64TC

Time (sec) 13.3 6.35 5.90 3.91

TFLOPS 12.2 25.4 27.5 41.5

Speedup 1.0 2.08 2.25 3.4

Energy (kJ) 24.1 13.4 13.3 6.30

MG Setup 3.4x faster 
and 

3.8x less energy
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Multigrid

Batch size 1 8 16 32 32TC

Time (sec per rhs) 0.157 0.125 0.0980 0.0889 0.0747

TFLOPS 10.7 12.8 17.8 19.4 22.8

 Energy (J per rhs) 275 190 180 176 125

• Speedups will only increase as optimization progresses 

• MRHS motivates a retuning of algorithmic parameters 

• Significant cost reduction for setup provides scope to improve preconditioner quality 

• As we increase RHS, we can get a better solver at constant iteration cost 

4x H100-80, tmLQCD V=323x64, , , Nvec = 32,64, κ = 0.1373 csw = 1.57551
| |r | |
| |b | |

< 10−10

MG Solvers
2.1x faster 

and 
2.2x less energy
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Sink Projections

• Time-slice contraction of fermions with 3-d Laplace eigenvectors 

• Critical part of the stochastic LapH pipeline 

• CPU-based projections on Summit comparable to MG solves at physical masses (CLS E250) 

• Traditionally run a serial loop over over eigenvectors and fermions 

     spin indices,   fermion index,   eigenvector index 

• Instead deploy the calculation as a MRHS computation to increase parallelism and reuse of loads 

• Use multi-level tiling to work around memory limitations and hide host <-> device transfers 

• Combination of CPU -> GPU and tiled computation ~100x speedup 

• No longer any significant cost compared to MG solves

cs,i,j
t = ∑⃗

x

ψ s,i †
⃗x,t

ϕ j
⃗x,t

s i j

Drew Hanlon, Ben Hoerz, 
Colin Morningstar, André Walker-Loud 
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Summary

• Rearchitected QUDA for multi-RHS computation everywhere 

• Scalable for future architecture evolution 

• MRHS solvers demonstrate significant speedup versus serial solvers 

• Speedups presently ~2-3x 

• Much more optimization coming (MG especially) 

• MRHS significantly reduces energy of computation 

• Using tensor cores gives super-linear reduction  

• Going forward, all stages of the LQCD pipeline should embrace this philosophy

More details at the poster by Evan Weinberg 

QUDA - Accelerated Batched Solvers for LQCD Workflows 

• Split Grid + MRHS 

• HISQ MG MRHS
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QUDA NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware
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REWORKING THE LQCD PIPELINE

2 nucleon (2 baryon) and 2 hadron (ππ, Κπ)  and meson-baryon catering cross sections 

slaphnn collaboration 

AI ~ flops / bytes
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