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openQCD is a simulation suite for lattice QCD, featuring an efficient 
implementation of the  improved Wilson-Dirac fermion operator. 

Pivotal to the performance properties of the code is the locally deflated solver.
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Why openQCD?



[JHEP0712:011,2007] Domain Decomposition in HMC (2003-2004)

Deflated DD HMC in 2007

Why openQCD?



• Module Development:

• Create a comprehensive set of C++/CUDA modules mapping the CPU (relevant) functions to GPU. 
Ensure these modules accurately reproduce the functionality of openQCD on the GPU.

• Data Structure Translation:

• Maintain consistent and coherent translation between GPU and CPU data structures. 
Ensure seamless data flow and compatibility (of fields).

• Function Naming Conventions:

• Adopt a clear and consistent naming convention. 
Example: dfl_subspace in CPU becomes dfl_subspace_gpu in GPU.

• GPU only:

• Implement all the computational part of inversion cycle on the GPU. 
Future Goals: Extend this to include HMC and SMD processes.

Develop C++/CUDA modules to replicate  
openQCD functions on the GPU

openQCD



• Redesigned Data Structures: 
Allow full memory coalesced access in GPU data structures 
and memory access.

• Code Readability: 
Prioritised code readability and usability. 
Avoided optimising non-critical routines (e.g., not all data 
structures have full memory coalescence).

• CUDA Grid Mapping: 
Mapped CUDA grid of blocks to geometrical blocks for 
efficient computation.

• Block Reductions: 
Implemented block reductions using CUB library for 
optimised performance.

• Database Duplication: 
Duplicated the openQCD database for GPU use. 
field status is propagated between CPU and GPU databases.

• Quadruple Precision Reduction: 
Implemented quadruple precision reduction to ensure 
computational accuracy.

• Random Number Generation: 
Integrated directly on the GPU robust random number 
generation for simulations.

• Validation: 
Guaranteed at field level for each openQCD test 
 
 
 
 
 
 

A pragmatic approach 

openQCD



The test ground



• No un-coalesced access

• EO memory arrangement for every field

• We opted for a index computation “in 
flight”, no lookup tables. 
Block sizes defined a compile time

• Can achieve 1Tflops per A100 card

A first test: weak scaling  for a local DW 244



• Centralised the MPI communications and support 
locking and non locking strategy at compile time.

• MPI is often erratic: 
non-locking comms over p-threads

• Topology awareness guarantees a sensible speedup 
thanks to NVlink

A first test: weak scaling  for a local DW 244
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A first test: weak scaling  for a local DW 244



A first test: weak scaling  for a local DW 48 × 243



• SAP and Deflation are two inverters that take 
advantage of 
locality and mode coherence.

• Our strategy has been to focus on an efficient 
porting of the two routines.

• block geometry allowing seamless use of 
different block sizes

• Shared memory within the sap blocks

• Block reduction through cubs thanks to the 
binding of the block indices to the CUDA grid

A more challenging case: SAP and DFL



✓ SAP seems to be a pretty well tuned 
routine, with small communication 
overhead.  

✓ On the lightest point the computational 
cost is equally shared between the SAP 
and the little-GCR. 

Kernel fusion could improve the little-
GCR but the overall performance is not 
going to change drastically.

A more challenging case: SAP and DFL

mval = mu mval = ms

TxL3 Mp MK a

E250 192x963 130 MeV 500 MeV 0.065 fm

64 Juwels booster nodes



• git & Continuous integration

• Code coverage

Modern coding standards



Already implemented:

✓ SAP / DFL / GCR

✓ Only PBC (Periodic Boundary Conditions):

✓ Random Number Generator

✓ Quadruple Precision in Reductions

✓ AMD/HIP porting works and passes initial checks.

What is missing 

Open Boundary Conditions

Exponential csw 

Independent/automatic single kernel tuning

Second stage hmc/smd (although gauge and csw forces gauge already implemented)

Project status



Testing and Release Strategy:

• Conduct initial testing phase with a selected group of colleagues and collaborators

• Identify and fix any preliminary bugs

• Gather feedback on usability and performances

• Ensure stability and reliability before broader release

Second Stage: Public release

• Release the code to the public with an appropriate license upon initial publication

• Provide detailed documentation and user guides

• Include comprehensive results from testing and performance evaluations

Future plans and code release


