OPENQCD ON GPU

Antonio Rago Quantum Theory Center, University of Southern Denmark

work done in collaboration with **Stefan Schaefer**

[JHEP0712:011,2007]

Why openQCD?

Domain Decomposition in HMC (2003-2004) Deflated DD HMC in 2007

Develop C++/CUDA modules to replicate openQCD functions on the GPU

- Module Development:
 - Create a comprehensive set of C++/CUDA modules mapping the CPU (relevant) functions to GPU. Ensure these modules accurately reproduce the functionality of openQCD on the GPU.
- Data Structure Translation:
 - Maintain consistent and coherent translation between GPU and CPU data structures. Ensure seamless data flow and compatibility (of fields).
- Function Naming Conventions:
 - Adopt a clear and consistent naming convention. Example: dfl_subspace in CPU becomes dfl_subspace_gpu in GPU.
- GPU only:
 - Implement all the computational part of inversion cycle on the GPU. Future Goals: Extend this to include HMC and SMD processes.

- Redesigned Data Structures: Allow full memory coalesced access in GPU data structures and memory access.
- Code Readability:
 - Prioritised code readability and usability. Avoided optimising non-critical routines (e.g., not all data structures have full memory coalescence).
- CUDA Grid Mapping: Mapped CUDA grid of blocks to geometrical blocks for efficient computation.
 - Block Reductions: Implemented block reductions using CUB library for optimised performance.
- Database Duplication:
 Duplicated the openQCD database for GPU use.
 field status is propagated between CPU and GPU databases.

A pragmatic approach

- Quadruple Precision Reduction: Implemented quadruple precision reduction to ensure computational accuracy.
- Random Number Generation: Integrated directly on the GPU robust random number generation for simulations.
- Validation:

Guaranteed at field level for each openQCD test

	<u>GPU0</u>	<u>GPU1</u>	GPU2	<u>GPU3</u>	NIC0	NIC1	NIC2	NIC3	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	X	NV4	NV4	NV4	PIX	SYS	SYS	SYS	18-23,66-71	3	N/A
GPU1	NV4	Х	NV4	NV4	SYS	PIX	SYS	SYS	6-11,54-59	1	N/A
GPU2	NV4	NV4	Х	NV4	SYS	SYS	PIX	SYS	42-47,90-95	7	N/A
GPU3	NV4	NV4	NV4	Х	SYS	SYS	SYS	PIX	30-35,78-83	5	N/A
NICØ	PIX	SYS	SYS	SYS	Х	SYS	SYS	SYS			
NIC1	SYS	PIX	SYS	SYS	SYS	Х	SYS	SYS			
NIC2	SYS	SYS	PIX	SYS	SYS	SYS	Х	SYS			
NIC3	SYS	SYS	SYS	PIX	SYS	SYS	SYS	Х			

Legend:

X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks

NIC Legend:

NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_2 NIC3: mlx5_3

The test ground

Hardware Configuration of the JUWELS Booster Module

936 compute nodes

- 2× AMD EPYC Rome 7402 CPU, 2× 24 cores, 2.8 GHz
- Simultaneous Multithreading
- 512 GB DDR4, 3200 MHz
- 4× NVIDIA A100 GPU, 40 GB HBM2e
- 4× InfiniBand HDR (Connect-X6)
- Diskless

A first test: weak scaling D_W for a local 24^4

- No un-coalesced access
- EO memory arrangement for every field
- We opted for a index computation "in flight", no lookup tables. Block sizes defined a compile time
- Can achieve ITflops per AI00 card

A first test: weak scaling D_W for a local 24^4

- Centralised the MPI communications and support locking and non locking strategy at compile time.
- MPI is often erratic: non-locking comms over p-threads
- Topology awareness guarantees a sensible speedup thanks to NVlink

						NVIC	DIA Nsigh
<u>File V</u> iew <u>T</u> ools <u>H</u> elp							
Project 6 × dw_ops_report1.ns	ys-rep ×						
= Timeline View ▼	Options						
33s •	996.2ms	+996.4ms	+996.6ms	+996.8ms	+997ms	+997.2ms	+997.4
- CUDA HW (0000:44:00.0 ·	kernel memory						
▶ [All Streams]	void D		void D	w_bulk_dble	e<(int)1>(…		
84.8% Default stream 17	void D		void D	w_bulk_dble	e<(int)1>(
▶ 9.7% Stream 42							
▶ 3.5% Stream 26			11				
▶ 2.0% Stream 27							
- Threads (12)							
▼ ✓ [21795] time_Dops -	o 100%		1 6000 500	10002 (002			
OS runtime libraries	n.h.mm.h.		1 al lln.	II. n.			
MPI	M			M	M	.00	
	•						
Stats System View 👻							
Time filter: 34.00 to 34.01 (0.01 s	econds or 0.0%).						
CUDA API Summary	4	Time *	Total Time	Instances	Avg	Med	Min
CUDA API Trace CUDA GPU Kernel Summary	77.9%	7.444 ms	15	496.258 µs	494.976 µs	491.00	
CUDA GPU Kernel/Grid/Block S	8.5%	807.744 µs	14	57.696 µs	57.456 µs	56.09	
CUDA GPU MemOps Summary	6.5%	624.352 µs	14	44.596 µs	44.496 µs	42.43	
CUDA GPU MemOps Summary CUDA GPU Summary (Kernels/	2.7%	259.456 µs		18.532 µs			
CLI command::				14	15.220 µs		
nsys stats -r cuda_gpu_kern_sur		2.2%	213.088 µs 208.256 µs		14.875 µs		
OpenQCD/openQCD/Analysis/op	penqcd_results/		200.200 µs	14	14.075 µs	14.040 µS	14.02
dw_ops_report1.sqlite"		•					

A first test: weak scaling D_W for a local 24^4

ር 🛓

A first test: weak scaling D_W for a local 48×24^3

ile View Teele Hele								NVI	DIA Nsight S	yste
ile <u>V</u> iew <u>T</u> ools <u>H</u> elp w_ops_32_report1.nsys-rep >	c									
	Options									
	·	+6	611ms	+611.	5ms	+6	312ms	+612.5m	s -	+613
- CUDA HW (0000:44:00.0	kernel memory		1					11		
▶ [All Streams]	۷	(N	/ void	Dw_bulk_d	ble<(int)1	>(doul	o	v void D	w_bulk_db	le<(
▶ 85.4% Default stream 1	7 v		/ void	Dw_bulk_d	ble<(int)1	>(doul	o	v void D	w_bulk_db	le<
3 streams hidden – +										
 Threads (12) 										
✓ [16095] time_Dops →	o 100%		1 000000000							
OS runtime libraries	nahi		ւ մեշնեվ		,abi			11	th	,a11
MPI			Ν		M.			M.		
CUDA API				c]					c	
Profiler overhead										
	o 100%									
Stats System View	•									_
me filter: 33.61 to 33.62 (0.01	seconds or 0.0	%).								
UDA API Summary		▲ Ti	me 🔹	Total Time	Instance	es	Avg	Med	Min	Μ
UDA API Trace			74.9%	7.968 m	าร	8	995.965 µs	995.773 µs	988.990 µs	S
CUDA GPU Kernel/Grid/Block Summary			9.7%	1.028 m	ns	9	114.182 µs	113.759 µs	113.248 µs	s ′
UDA GPU MemOps Summary (by Size) UDA GPU MemOps Summary (by Time)			8.8%	932.092 µ	IS	9	103.565 µs	103.455 µs	102.048 µs	s í
l command::			3.6%	379.199 µ	IS	8	47.399 µs	47.200 µs	46.368 µs	S
LI command:: sys stats -r cuda_gpu_kern_sum "/Users/rago/Work/			2.0%	216.897 µ	IS	8	27.112 µs	27.168 µs	26.497 µs	S
penQCD/openQCD/Analysis/o	_		1.1%	118.238 µ		8	14.779 µs	14.847 µs	14.336 µs	

- SAP and Deflation are two inverters that take advantage of locality and mode coherence.
- Our strategy has been to focus on an efficient porting of the two routines.
 - block geometry allowing seamless use of different block sizes
 - Shared memory within the sap blocks
 - Block reduction through cubs thanks to the binding of the block indices to the CUDA grid

	TxL ³	M_{π}	Mĸ	a
E250	192×96 ³	130 MeV	500 MeV	0.065 fm

- ✓ SAP seems to be a pretty well tuned routine, with small communication overhead.
- On the lightest point the computational cost is equally shared between the SAP and the little-GCR.
- C Kernel fusion could improve the little-GCR but the overall performance is not going to change drastically.

64 Juwels booster nodes

- git & Continuous integration
- Code coverage

• • • • • • openQCDonGPU/openQCD: • ×	+				~		
← → C 😋 github.com/openQCDonGl	PU/openQCD		다 ☆ 스 끄 🕮 :				
■ OpenQCDonGPU / openQCD 台			Q	+ • • • II 🗗 🚺			
<> Code Issues Pull requests 	🕞 Actions 🗄 Projects 🔃 Security	🗠 Insights 🐯 Settings					
💶 оре	Private		S Edit Pins ▼	✓ ♀ Fork 0 ✓ ★ Star 0	•		
រុំ k mas	ster 👻 ਮਿ Branches 🕟 0 Tags	Q Go to file	t Add file - <> Code -	About	٤ġ		
_元 latt	t icestefan some fixes for merge 🗸		91d4e26 · 2 days ago 🕚 232 Commits	openQCD on GPU repository			
.gitl	hub	update ci	2 weeks ago	কা GPL-3.0 license			
📄 gpu	u_devel/CUDA	Merge branch 'withflags'	2 days ago	- Activity			
ope	enQCD-2.4.2	some fixes for merge	2 days ago	 Custom properties Stars 			
🗋 .cla	ang-format	Update .clang-format	2 weeks ago	⊙ 0 watching			
🗋 .giti	ignore	cleaning up for the Cl	2 weeks ago	ኇ 0 forks			
	ENSE.md	Create LICENSE.md	3 weeks ago	Contributors 2			
🗋 REA	ADME.md	Update README.md	2 weeks ago	ib rabdomant Antonio Rago			
	ADME 최초 GPL-3.0 license		Ø	latticestefan			
This	repository contains the openQCD port to	GPU simulation code.		Languages			
	i-gpu passing C check-format passing			 C 85.5% Makefile 2.1% Other 0.2% 			

Modern coding standards

238	[check_Dw] OK
239	[check_Dw_bulk] OK
240	[check_dfl_subspace] OK
241	[check_set_Aw_gpu] OK
242	[check_vfields] OK
243	[check_set_Awhop_gpu] OK
244	[check_set_Awblk_gpu] OK
245	[check_sapgcr] OK
246	[check_update_Awblk_gpu]
247	[check_set_Awhat_gpu] OK
248	[check_Aw_gpu] OK
249	[check_dfl_modes] OK
250	[check_dflsapgcr] OK
	Complete job

Already implemented:

- ✓ SAP / DFL / GCR
- Only PBC (Periodic Boundary Conditions): \checkmark
- ✓ Random Number Generator
- Quadruple Precision in Reductions \checkmark
- ✓ AMD/HIP porting works and passes initial checks.

What is missing

- Open Boundary Conditions
- Exponential c_{sw}
- Independent/automatic single kernel tuning
- Second stage hmc/smd (although gauge and c_{sw} forces gauge already implemented)

Project status

Testing and Release Strategy:

- Conduct initial testing phase with a selected group of colleagues and collaborators
- Identify and fix any preliminary bugs
- Gather feedback on usability and performances
- Ensure stability and reliability before broader release

Second Stage: Public release

- Release the code to the public with an appropriate license upon initial publication
- Provide detailed documentation and user guides
- Include comprehensive results from testing and performance evaluations

Future plans and code release

