
OPENQCD ON GPU

Antonio Rago
Quantum Theory Center, University of Southern Denmark

work done in collaboration with Stefan Schaefer

openQCD is a simulation suite for lattice QCD, featuring an efficient
implementation of the improved Wilson-Dirac fermion operator.

Pivotal to the performance properties of the code is the locally deflated solver.

𝒪(a)

The Berlin Wall (2001)

Ukawa (2001)

Luscher (2004)

14
44

12
8
◊

96
3

sp
ee

du
p

fa
ct

or
(t
[2
56

co
re
s]
/t

)

number of cores

local 24 · 123, Dw
local 24 · 123, D̂w

100

1k

10k

100k

100 1k 10k 100k

weak scaling of openQCD-2.4

Why openQCD?

[JHEP0712:011,2007] Domain Decomposition in HMC (2003-2004)

Deflated DD HMC in 2007

Why openQCD?

• Module Development:

• Create a comprehensive set of C++/CUDA modules mapping the CPU (relevant) functions to GPU.
Ensure these modules accurately reproduce the functionality of openQCD on the GPU.

• Data Structure Translation:

• Maintain consistent and coherent translation between GPU and CPU data structures.
Ensure seamless data flow and compatibility (of fields).

• Function Naming Conventions:

• Adopt a clear and consistent naming convention.
Example: dfl_subspace in CPU becomes dfl_subspace_gpu in GPU.

• GPU only:

• Implement all the computational part of inversion cycle on the GPU.
Future Goals: Extend this to include HMC and SMD processes.

Develop C++/CUDA modules to replicate
openQCD functions on the GPU

openQCD

• Redesigned Data Structures:
Allow full memory coalesced access in GPU data structures
and memory access.

• Code Readability:
Prioritised code readability and usability.
Avoided optimising non-critical routines (e.g., not all data
structures have full memory coalescence).

• CUDA Grid Mapping:
Mapped CUDA grid of blocks to geometrical blocks for
efficient computation.

• Block Reductions:
Implemented block reductions using CUB library for
optimised performance.

• Database Duplication:
Duplicated the openQCD database for GPU use.
field status is propagated between CPU and GPU databases.

• Quadruple Precision Reduction:
Implemented quadruple precision reduction to ensure
computational accuracy.

• Random Number Generation:
Integrated directly on the GPU robust random number
generation for simulations.

• Validation:
Guaranteed at field level for each openQCD test

A pragmatic approach

openQCD

The test ground

• No un-coalesced access

• EO memory arrangement for every field

• We opted for a index computation “in
flight”, no lookup tables.
Block sizes defined a compile time

• Can achieve 1Tflops per A100 card

A first test: weak scaling for a local DW 244

• Centralised the MPI communications and support
locking and non locking strategy at compile time.

• MPI is often erratic:
non-locking comms over p-threads

• Topology awareness guarantees a sensible speedup
thanks to NVlink

A first test: weak scaling for a local DW 244

5

NVIDIA GPUDIRECT™
Peer to Peer Transfers

12/4/2
018

GPU
1

GPU1
Memory

CPU

Chip
set

GPU
2

GPU2
Memory

IB

System
Memory

PCI-e/NVLINK

6

NVIDIA GPUDIRECT™
Support for RDMA

12/4/2
018

GPU
1

GPU1
Memory

CPU

Chip
set

GPU
2

GPU2
Memory

IB

System
Memory

PCI-e/NVLINK

A first test: weak scaling for a local DW 244

A first test: weak scaling for a local DW 48 × 243

• SAP and Deflation are two inverters that take
advantage of
locality and mode coherence.

• Our strategy has been to focus on an efficient
porting of the two routines.

• block geometry allowing seamless use of
different block sizes

• Shared memory within the sap blocks

• Block reduction through cubs thanks to the
binding of the block indices to the CUDA grid

A more challenging case: SAP and DFL

✓ SAP seems to be a pretty well tuned
routine, with small communication
overhead.

✓ On the lightest point the computational
cost is equally shared between the SAP
and the little-GCR.

Kernel fusion could improve the little-
GCR but the overall performance is not
going to change drastically.

A more challenging case: SAP and DFL

mval = mu mval = ms

TxL3 Mp MK a

E250 192x963 130 MeV 500 MeV 0.065 fm

64 Juwels booster nodes

• git & Continuous integration

• Code coverage

Modern coding standards

Already implemented:

✓ SAP / DFL / GCR

✓ Only PBC (Periodic Boundary Conditions):

✓ Random Number Generator

✓ Quadruple Precision in Reductions

✓ AMD/HIP porting works and passes initial checks.

What is missing

Open Boundary Conditions

Exponential csw

Independent/automatic single kernel tuning

Second stage hmc/smd (although gauge and csw forces gauge already implemented)

Project status

Testing and Release Strategy:

• Conduct initial testing phase with a selected group of colleagues and collaborators

• Identify and fix any preliminary bugs

• Gather feedback on usability and performances

• Ensure stability and reliability before broader release

Second Stage: Public release

• Release the code to the public with an appropriate license upon initial publication

• Provide detailed documentation and user guides

• Include comprehensive results from testing and performance evaluations

Future plans and code release

